Predicting service life of timber structures
![]() |
The image above shows the method currently used by the prototype CLICKDesign tool, where the wood texture is rendered from a 3D model and projected onto a wooden cladding, whereafter the end user can change the degree of weathering to explore how the visual appearance of the wall will change over time. |
Contents |
[edit] Introduction
Timber structures and commodities are exposed to several mechanisms that limit their service life. The term service life refers to the duration until a limit state is reached, i.e. when the performance is no longer deemed acceptable.
A structure can have several limit states relating to different performance criteria, such as safety, functionality and aesthetics. The service life depends on a set of relevant performance criteria, the acceptable limits states, the mechanisms involved as well as maintenance to counteract the effect of those mechanisms. For example, a façade should remain tight, maintain some level of structural integrity and remain aesthetically appealing. See the illustration in the figure below for additional examples.
![]() |
As such, there are several mechanisms and limit states involved in the service life assessment. On the other hand, the main concern of a structural beam is safety, which often involves only wood-destroying fungi as degrading mechanism.
[edit] From research to practice
The CLICKDesign project aims at developing a tool to predict service life for timber elements and structures. The general objective of WP6 is to bridge the gap between research and practice. In short, WP6 receives input from other WPs (which are specialized on specific limit states) and puts it into an easy-to-use format, i.e. delivering fingertip knowledge to enable service life specification of wood to the end-user.
By having a WP dedicated to parsing and putting research output into context, the goal is to increase the project’s impact and value creation to the end user. The end user is anyone who is interested in the long-term performance of wood but unable to read scientific papers and parse the raw data.
[edit] Importance of context
Sometimes, scientific models are simply not convenient to use. For example, we can model the biological degradation of a specific joint in a timber deck made of spruce sapwood using a variety of complex moisture transport models and decay prediction models. However, most end users are not familiar with such models, nor do they have time to wait for hours to get the results.
Other times, the research output needs context. For example, we can predict how the colour of a wooden board changes over time due to superficial photo-degradation, but the end user is left wondering how this will affect their deck or house. Similarly, we can predict how quickly termites degrade various wood species, but the end user is perhaps more interested in how they can stop termites from getting into their house in the first place.
Context is key in bridging the divide between research and end user. We can remove the need for complex models by delivering pre-calculated scenarios and decay maps, we can provide tools to simulate the aesthetical changes of wood structures and we can work towards providing more general guidelines and recommendations to home owners in termite-risk zones.
[edit] Challenges
The work of WP6 is extremely interdisciplinary. We need to follow and understand most of the activities in the project without going too much into detail. Being creative and flexible is key, as we often encounter new types of challenges. For example, a key part in modelling the visual appearance of wood is to visualise organic wood texture.
A first version of the tool is planned to be tested against wood industry people and architects during 2020-2021.
This article originally appeared on the BRE website. It was written by Jonas Niklewski and Eva Frühwald Hansson and published in December 2020.
[edit] Related articles on Designing Buildings Wiki
- Aesthetics and performance.
- BRE articles on Designing Buildings Wiki.
- Decking.
- Physical Properties of Wood.
- Recognising wood rot and insect damage in buildings.
- Testing timber.
- The use of timber in construction.
- Timber vs wood.
[edit] External resources
Featured articles and news
The restoration of the novelist’s birthplace in Eastwood.
Life Critical Fire Safety External Wall System LCFS EWS
Breaking down what is meant by this now often used term.
PAC report on the Remediation of Dangerous Cladding
Recommendations on workforce, transparency, support, insurance, funding, fraud and mismanagement.
New towns, expanded settlements and housing delivery
Modular inquiry asks if new towns and expanded settlements are an effective means of delivering housing.
Building Engineering Business Survey Q1 2025
Survey shows growth remains flat as skill shortages and volatile pricing persist.
Construction contract awards remain buoyant
Infrastructure up but residential struggles.
Home builders call for suspension of Building Safety Levy
HBF with over 100 home builders write to the Chancellor.
CIOB Apprentice of the Year 2024/2025
CIOB names James Monk a quantity surveyor from Cambridge as the winner.
Warm Homes Plan and existing energy bill support policies
Breaking down what existing policies are and what they do.
Treasury responds to sector submission on Warm Homes
Trade associations call on Government to make good on manifesto pledge for the upgrading of 5 million homes.
A tour through Robotic Installation Systems for Elevators, Innovation Labs, MetaCore and PORT tech.
A dynamic brand built for impact stitched into BSRIA’s building fabric.
BS 9991:2024 and the recently published CLC advisory note
Fire safety in the design, management and use of residential buildings. Code of practice.