Air change rates
Contents |
[edit] Introduction
Air is continuously exchanged between buildings and their surroundings as a result of mechanical and passive ventilation and infiltration through the building envelope. The rate at which air is exchanged is an important property for the purposes of ventilation design and heat loss calculations and is expressed in ‘air changes per hour’ (ach).
If a building has an air change rate of 1 ach, this equates to all of the air within the internal volume of the building being replaced over a 1 hour period.
[edit] Calculating air change rates
A number of techniques are available for calculating the air change rate of a building. The choice of method depends on the accuracy required. The most straightforward method relies on the use of a simple mathematical equation, while the most complex methods use computational analysis and consider many different variables (such as computational fluid dynamics).
The basic method calculates air change rates using the following equation:
n = 3,600 x q / V
Where:
n = Air changes per hour (ach)
q = Fresh air flow rate (m3/s)
Online air change rate calculators and tables are available for different room types, such as: https://www.electricalworld.com/en/Air-Change-Calculator-and-Table/cc-48.aspx
[edit] Measuring air change rates
Air change rates resulting from ventilation can be quantified by measuring the air velocity at selected positions within supply ducts. The velocities are normally measured using a pitot tube connected to a pressure gauge or manometer, or using a hot wire probe and meter.
Tracer gas measurement can be used to determine the average air change rate for naturally'-'ventilated spaces' and to measure infiltration (air tightness)'. To do this, a detectable, non-toxic gas is released into the space and the reduction in its concentration within the internal atmosphere is monitored over a given time period.'
For more information, see Air permeability testing.
[edit] Legislation and guidance
Specific air change rates are required in buildings to control internal temperatures and to introduce clean, oxygen-rich air and remove stale, humid air. The requirements will vary depending on a number of factors including; the type of space, the level of occupation and usage and the geographical location of the building.
In the UK, several legislative documents have been published that set appropriate standards for air change rates in different types of construction.
Approved document F sets out the minimum requirements for ventilation to provide comfortable conditions and to prevent surface and interstitial condensation. Approved document F expresses air change rates in a number of different ways:
- air changes per hour.
- litres per second (l/s).
- l/s per m^2 of internal floor area.
- l/s per piece of equipment.
- l/s per person.
For many types of building, the approved document simply refers to standards set in CIBSE Guide B: Heating, ventilating, air conditioning and refrigeration.
A wide range other guidance is also available, including CIBSE KS17: Indoor air quality and ventilation, which provides information about the required air change rates to achieve acceptable indoor air quality, and BS 5925: Code of practice for ventilation principles and designing for natural ventilation, which sets out recommended air flow rates for natural ventilation.
[edit] Related articles on Designing Buildings
- Air infiltration.
- Air permeability testing.
- Air quality.
- Air Quality Taskforce.
- Air tightness in buildings.
- Computational fluid dynamics.
- Draughts in buildings.
- Effective ventilation in buildings.
- Indoor air quality.
- Stale air.
- The history of non-domestic air tightness testing.
- UV disinfection of building air to remove harmful bacteria and viruses.
- Ventilation.
[edit] External references
- Building Regulations: Approved Document F – Ventilation.
- CIBSE KS17: Indoor Air Quality and Ventilation.
- CIBSE Guide B: Heating, ventilating, air conditioning and refrigeration.
- BS 5925: Code of practice for ventilation principles and designing for natural ventilation.
- https://www.electricalworld.com/en/Air-Change-Calculator-and-Table/cc-48.aspx
Featured articles and news
CLC and BSR process map for HRB approvals
One of the initial outputs of their weekly BSR meetings.
Building Safety Levy technical consultation response
Details of the planned levy now due in 2026.
Great British Energy install solar on school and NHS sites
200 schools and 200 NHS sites to get solar systems, as first project of the newly formed government initiative.
600 million for 60,000 more skilled construction workers
Announced by Treasury ahead of the Spring Statement.
The restoration of the novelist’s birthplace in Eastwood.
Life Critical Fire Safety External Wall System LCFS EWS
Breaking down what is meant by this now often used term.
PAC report on the Remediation of Dangerous Cladding
Recommendations on workforce, transparency, support, insurance, funding, fraud and mismanagement.
New towns, expanded settlements and housing delivery
Modular inquiry asks if new towns and expanded settlements are an effective means of delivering housing.
Building Engineering Business Survey Q1 2025
Survey shows growth remains flat as skill shortages and volatile pricing persist.
Construction contract awards remain buoyant
Infrastructure up but residential struggles.
Home builders call for suspension of Building Safety Levy
HBF with over 100 home builders write to the Chancellor.
CIOB Apprentice of the Year 2024/2025
CIOB names James Monk a quantity surveyor from Cambridge as the winner.
Warm Homes Plan and existing energy bill support policies
Breaking down what existing policies are and what they do.
Treasury responds to sector submission on Warm Homes
Trade associations call on Government to make good on manifesto pledge for the upgrading of 5 million homes.
A tour through Robotic Installation Systems for Elevators, Innovation Labs, MetaCore and PORT tech.
A dynamic brand built for impact stitched into BSRIA’s building fabric.
BS 9991:2024 and the recently published CLC advisory note
Fire safety in the design, management and use of residential buildings. Code of practice.