Effective ventilation in buildings
Contents |
[edit] Introduction
The World Health Organisation has published information about the airborne transmission of COVID-19. This information further emphasises the importance of having good, effective ventilation in a building.
[edit] Air change rates
Ensuring correct air change rates in an occupied space has always been an important design consideration - one perhaps perceived as only being critical in healthcare settings. Given our ‘new normal’, the emphasis on correct air change rates across all occupied settings is becoming crucial.
The air change rate (ACR) in a room is a function of the ventilation supply or extract flowrate (in l/s or m³/h) and a function of the volume of the room (m³). The resultant air change rate, normally expressed as air changes per hour (ACH) (h-1), gives us an indication of how many times per hour the ventilation system provides the room with new fresh air.
Ventilation is paramount to dilute the concentration of airborne contaminants and it is important to understand how contaminants are diluted, in order to establish procedures, i.e. time that has to pass between patients entering a room in a hospital.
[edit] Making calculations
By means of visualising the air change rate in a room, if we have an empty glass simulating our room - which is sitting under a tap acting as our ventilation system - and the tap is turned on the equivalent air change rate is a count of how many times the glass can be filled with water in a certain period of time. If some or all of the water misses the glass and goes directly down the drain, the air change rate is effectively reduced. As in the case of a ventilation system, consideration would also need to be given as to what the consequences may be if the tap water were contaminated.
If the source of contaminants is still in the room, the ventilation system will eventually provide a steady state concentration of contaminants, which is diluted if compared to the source. If there are (airborne) contaminants in the room, but the source has left (e.g. the patient has left the surgery) the ventilation system will purge the contaminants with every air change.
The decay of the concentration can be expressed by the equation:
[Please click on the image to see the equation.]
We do have to take into account the fact that the air supplied must be fresh, i.e. not recirculated and that the ventilation must be effective; fresh air must not be short circuited into the extract and it must reach everywhere in the room, to avoid areas of high contaminant concentration (stagnation).
[Please click on the image to see the equation.]
This means that it will take longer to purge the contaminant from the room i.e. If the ACR of an isolation room is 10 ACH, for a k value of 0.6, the effective ventilation rate would be 6 ACH.
BSRIA has studied several hospital isolation rooms with dedicated ventilation. The k factor in those rooms, which were considered well-mixed, was k= 0.8, calculated using gas tracer methodologies.
This article originally appeared on the BSRIA website under the title, "New World Health Organisation information emphasises effective ventilation in buildings." It was published July 2020.
--BSRIA
[edit] Related articles on Designing Buildings
- Air change rates.
- Air filtration and clean Indoor air quality standards.
- Air tightness in buildings.
- At a glance - Indoor air quality.
- BSRIA articles on Designing Buildings Wiki.
- Ensuring good indoor air quality in buildings.
- HVAC balancing.
- HVAC industry defines post COVID-19 changes.
- Indoor air quality.
- Indoor air velocity.
- Let us evolve our buildings from being passive structures to interactive and reactive systems.
- Mechanical ventilation's role in improving indoor air quality.
- Timber and healthy interiors.
- Ventilation.
- Ventilation and control of COVID-19 transmission.
[edit] External resources
Featured articles and news
HSE simplified advice for installers of stone worktops
After company fined for repeatedly failing to protect workers.
Co-located with 10th year of UK Construction Week.
How orchards can influence planning and development.
Time for knapping, no time for napping
Decorative split stone square patterns in facades.
A practical guide to the use of flint in design and architecture.
Designing for neurodiversity: driving change for the better
Accessible inclusive design translated into reality.
RIBA detailed response to Grenfell Inquiry Phase 2 report
Briefing notes following its initial 4 September response.
Approved Document B: Fire Safety from March
Current and future changes with historical documentation.
A New Year, a new look for BSRIA
As phase 1 of the BSRIA Living Laboratory is completed.
A must-attend event for the architecture industry.
Caroline Gumble to step down as CIOB CEO in 2025
After transformative tenure take on a leadership role within the engineering sector.
RIDDOR and the provisional statistics for 2023 / 2024
Work related deaths; over 50 percent from construction and 50 percent recorded as fall from height.
Solar PV company fined for health and safety failure
Work at height not properly planned and failure to take suitable steps to prevent a fall.
The term value when assessing the viability of developments
Consultation on the compulsory purchase process, compensation reforms and potential removal of hope value.
Trees are part of the history of how places have developed.