Aerated concrete AC
Contents |
[edit] What is Aerated concrete ?
Aerated concrete (AC) also called cellular concrete is often used to describe any concrete product that contains significant pockets of air in a controlled manner, usually it is prepared with water, cement, a foaming agent and perhaps a fine light aggregate such as sand, but rarely with aggregates. The foaming agent introduces air bubbles into the finished product, making it lighter and having insulative properties.
When the air content within concrete is about 1.5% - 3% and bubbles are relatively large in size, over around 1mm and randomly located throughout the mix it is referred to as entrapped air, mostly an unintended consequence of mixing concrete, with insufficient agitation. When the air is uniformly distributed in microscopic bubbles of less than 1mm it is referred to as air entrainment. When it makes up between 3%-8% by volume of the finished product it is often done so to improve the performance under freeze thaw conditions. Aerated concrete or cellular concrete however normally refers to concrete products that have a higher content around 25-25% of air bubbles, which may be higher is no structural performance is required.
[edit] A background to aerated concrete (AC)
As early as 1889 Czech Hoffman tested and patented a method of aerating concrete with the use of carbon dioxide, whilst in 1914 Aylsworth and Dyer used aluminium powder and calcium hydroxide to create and patent a porous cementitious mixture. This might be considered as a very early form of aerated concrete, though much of the credit is associated with Johan Axel Eriksson who developed both aerated and autoclaved aerated concrete as described below.
[edit] A background to autoclaved aerated concrete (AAC)
The Architect and inventor Johan Axel Eriksson is generally accepted to be credited with perfecting the technique of producing a limestone and ground slate, lime formula in the early 1920's with Professor Henrik KreĆ¼ger at the Royal Institute of Technology in Sweden. They found that the foamed product could withstand the moisture and pressure of autoclaving and that this sped up the curing process without causing shrinkage, improving performance. The technology was patented using ground slate or alum shale and started to be mass produced from the late 30's.
Sometime later in the 1970's it was discovered that natural uranium within the alum shale, caused some radioactive radon gas exposure, which led to a new recipe being developed. This formula contained quartz sand, calcined gypsum, lime(mineral), cement, water and aluminium powder, but no contaminated alum shale and is the base recipe of many aerated concrete blocks that are produced today.
The aluminium powder is a air entraining agent and reacts with the calcium hydroxide formed on hydration of cement to produce hydrogen gas bubbles. The agent is mixed with the a fine aggregate (usually sand or fly ash), cement, lime, gypsum, and water and reacts on hydration creating pockets. Autoclaved aerated concrete (AAC) is essentially the same but once poured and setting, is placed in an autoclave which applies steam and pressure, to speeds up the curing process and create a stronger product.
A further iteration or variation of AAC is RAAC which is Reinforced Autoclaved Aerated Concrete, this is essentially the same product but containing reinforcement bars, to allow AAC to be formed into panels for walls, roofs and floors. It was developed later than AAC, and started to be used widely in countries like the UK from around the 1950's. The lifespan of such products might be shorter than those without reinforcement because of the possibilities of corrosion.
[edit] Related articles on Designing Buildings
- Aircrete.
- Aircrete blocks.
- Alkali-activated binder.
- Alkali-aggregate reaction (AAR).
- Applications, performance characteristics and environmental benefits of alkali-activated binder concretes.
- Blockwork.
- Cellular concrete.
- Fly ash.
- Formwork.
- Precast concrete.
- Self-compacting concrete.
- Smart concrete.
- Types of concrete.
- Types of concrete specification.
Featured articles and news
Plumbing and heating systems in schools
New apprentice pay rates coming into effect in the new year
Addressing the impact of recent national minimum wage changes.
EBSSA support for the new industry competence structure
The Engineering and Building Services Skills Authority, in working group 2.
Notes from BSRIA Sustainable Futures briefing
From carbon down to the all important customer: Redefining Retrofit for Net Zero Living.
Principal Designer: A New Opportunity for Architects
ACA has launches a Principal Designer Register for architects.
A new government plan for housing and nature recovery
Exploring a new housing and infrastructure nature recovery framework.
Leveraging technology to enhance prospects for students
A case study on the significance of the Autodesk Revit certification.
Fundamental Review of Building Regulations Guidance
Announced during commons debate on the Grenfell Inquiry Phase 2 report.
CIAT responds to the updated National Planning Policy Framework
With key changes in the revised NPPF outlined.
Councils and communities highlighted for delivery of common-sense housing in planning overhaul
As government follows up with mandatory housing targets.
CIOB photographic competition final images revealed
Art of Building produces stunning images for another year.
HSE prosecutes company for putting workers at risk
Roofing company fined and its director sentenced.
Strategic restructure to transform industry competence
EBSSA becomes part of a new industry competence structure.
Major overhaul of planning committees proposed by government
Planning decisions set to be fast-tracked to tackle the housing crisis.
Industry Competence Steering Group restructure
ICSG transitions to the Industry Competence Committee (ICC) under the Building Safety Regulator (BSR).
Principal Contractor Competency Certification Scheme
CIOB PCCCS competence framework for Principal Contractors.
The CIAT Principal Designer register
Issues explained via a series of FAQs.