Thermal conductivity
[edit] Introduction
Thermal conductivity (sometimes referred to as k-value or lambda value (λ)) is a measure of the rate at which temperature differences transmit through a material. The lower the thermal conductivity of a material, the slower the rate at which temperature differences transmit through it, and so the more effective it is as an insulator. Very broadly, the lower the thermal conductivity of a building's fabric, the less energy is required to maintain comfortable conditions inside.
Thermal conductivity is a fundamental material property independent of thickness. It is measured watts per meter kelvin (W/mK).
The thermal resistance of the layers of the a building's fabric (R measured in in m²K/W) can be calculated from the thickness of each layer / the thermal conductivity of that layer.
The U value of an element of a building can be calculated from sum of the thermal resistances (R-values) of the layers that make up the element plus its internal and external surface resistances (Ri and Ro).
U-value = 1 / (ΣR + Ri + Ro)
U-values (sometimes referred to as heat transfer coefficients or thermal transmittances) are used to measure how effective elements of a buildings fabric are as insulators.
The standards for the measurement of thermal conductivity are BS EN 12664, BS EN 12667 and BS EN 12939. In the absence of values provided by product manufacturers following thermal conductivity tests, the thermal conductivity data obtained from BS EN 12524 Building materials and products. Hygrothermal properties.
[edit] Thermal conductivity of typical building materials
Thermal conductivity values of typical building materials shown below.
Material | W/mK |
Blockwork (light) | 0.38 |
Blockwork (medium) | 0.51 |
Blockwork (dense) | 1.63 |
Brick (exposed) | 0.84 |
Brick (protected) | 0.62 |
Chipboard | 0.15 |
Concrete (aerated) | 0.16 |
Concrete (cellular 400 kg/m3) | 0.1 |
Concrete (cellular 1200 kg/m3) | 0.4 |
Concrete (dense) | 1.4 |
fibreglass quilt | 0.033 |
glass | 1.05 |
glass foam aggregate (dry) | 0.08 |
hemp slabs | 0.40 |
hempcrete | 0.25 |
mineral wool | 0.038 |
mortar | 0.80 |
phenolic foam (PIR) | 0.020 |
plaster (gypsum) | 0.46 |
plasterboard (gypsum) | 0.16 |
polystyrene foam | 0.032 |
polyurethane foam (PUR) | 0.025 |
render (sand/cement) | 0.50 |
screed (cement/sand) | 0.41 |
steel | 16 - 80 |
stone (limestone) | 1.30 |
stone (sandstone) | 1.50 |
stone (granite) | 1.7 - 4.0 |
stone chippings | 0.96 |
straw bale | 0.09 |
timber (softwood) | 0.14 |
timber (hardwood - commonly used) | 0.14 - 0.17 |
woodfibre board | 0.11 |
[edit] Related articles on Designing Buildings Wiki
Featured articles and news
The act of preservation may sometimes be futile.
Twas the site before Christmas...
A rhyme for the industry and a thankyou to our supporters.
Plumbing and heating systems in schools
New apprentice pay rates coming into effect in the new year
Addressing the impact of recent national minimum wage changes.
EBSSA support for the new industry competence structure
The Engineering and Building Services Skills Authority, in working group 2.
Notes from BSRIA Sustainable Futures briefing
From carbon down to the all important customer: Redefining Retrofit for Net Zero Living.
Principal Designer: A New Opportunity for Architects
ACA launches a Principal Designer Register for architects.
A new government plan for housing and nature recovery
Exploring a new housing and infrastructure nature recovery framework.
Leveraging technology to enhance prospects for students
A case study on the significance of the Autodesk Revit certification.
Fundamental Review of Building Regulations Guidance
Announced during commons debate on the Grenfell Inquiry Phase 2 report.
CIAT responds to the updated National Planning Policy Framework
With key changes in the revised NPPF outlined.
Councils and communities highlighted for delivery of common-sense housing in planning overhaul
As government follows up with mandatory housing targets.
Comments
Thermal conductivity (often denoted k, λ, or κ) refers to the intrinsic ability of a material to transfer heat. It is evaluated primarily in terms of Fourier’s Law for heat conduction. https://thermtest.com/what-is-thermal-conductivity