Runway construction
Contents |
[edit] Introduction
The construction of runways is similar to that of roads in that the type of pavement required depends on the loads needing to be carried, although the stresses applied by aircraft can be very high and variable, up to 8 times greater than those on roads.
Pavements must facilitate safe aircraft ground operations, and in order to achieve this they must meet a number of performance requirements:
- Rideability.
- Good friction and drainage characteristics.
- Strength and stability sufficient to withstand shear stresses induced by heavy wheel loads and high tyre pressures.
- Durability.
- Resistance to fuel spillage and jet blast.
- Low maintenance requirements.
[edit] Classifications
Airfield pavements are designed to carry aircraft within certain one of two classifications, determined by the intensity of loads and stresses.
[edit] Load Classification Number – Load Classification Group (LCN-LCG)
This is used for UK military airfields. Each aircraft type is assigned a Load classification number (LCN) on a scale of 1 to 120. This reflects its relative effect on pavements and takes into account the weight of the aircraft as well as the specification of the undercarriage wheels. The LCN values are divided into seven Load classification groups (LCG) depending on their load-carrying capacity.
[edit] Aircraft Classification Number – Pavement Classification Number (ACN-PCN)
The relative loading severity of an aircraft on a pavement is expressed by one of 16 different values given to the aircraft, the Aircraft classification number (ACN). These represent the maximum and empty operating weights on rigid and flexible pavements for each of four different subgrade strengths.
The Pavement classification number (PCN) is used in combination with the ACN to indicate the strength the airfield pavement. It is recorded as a five-part code which corresponds to:
- LCN value.
- Type of pavement (rigid or flexible).
- Type of subgrade.
- Maximum tyre pressure for the pavement.
- How the strength assessment has been arrived at (technical design or experience-in-use).
[edit] Pavement types
Rigid pavements are commonly used for runway and taxiway junctions, aprons and hard-standings, and may be either reinforced or unreinforced pavement quality concrete (PQC). PQC is concrete that will provide a minimum flexural strength of 3.5 MN/m2 or more when the pavement is in use.
Composite pavements can also be used. Similar to road pavements, these consist of continuously reinforced concrete with a bituminous topping. The bitumen surface is usually asphalt and must have high stability and smooth-riding qualities.
Flexible pavements may be economical when used for light aircraft but otherwise will tend not to be appropriate.
Joints in concrete pavements are similar to those for concrete roads, although in a continuously reinforced slab there are no transverse joints. The reinforcement is lapped or welded to provide continuity.
[edit] Runway drainage
Runways must have excellent drainage capabilities as aircraft can aquaplane if there is just a thin film of water on the surface. The usual cross falls on the runway are 1 in 66. Cross falls on runway shoulders may be increased to 1 in 40. Gullies or drainage channels should also be provided.
On areas subject to fuel spillage, drainage should be channeled to a fuel and oil interceptor so that the water course is not polluted and to reduce the risk of fire. A single open trap located near the drainage outfall is usually provided.
[edit] Find out more
[edit] Related articles on Designing Buildings Wiki
- Bituminous mixing and laying plant.
- Bridge construction.
- Construction sidings.
- Ground conditions.
- Highway drainage.
- Infrastructure.
- Kerbs.
- Overview of the road development process.
- Pavement.
- Railway engineering.
- Road construction.
- Road joints.
- Tunnelling.
- Types of soil.
- Types of road and street.
[edit] External references
- Ministry of Defence – Pavement Quality Concrete for Airfields
- ‘Introduction to Civil Engineering Construction’ (3rd ed.), HOLMES, R., College of Estate Management (1995)
Featured articles and news
HSE simplified advice for installers of stone worktops
After company fined for repeatedly failing to protect workers.
Co-located with 10th year of UK Construction Week.
How orchards can influence planning and development.
Time for knapping, no time for napping
Decorative split stone square patterns in facades.
A practical guide to the use of flint in design and architecture.
Designing for neurodiversity: driving change for the better
Accessible inclusive design translated into reality.
RIBA detailed response to Grenfell Inquiry Phase 2 report
Briefing notes following its initial 4 September response.
Approved Document B: Fire Safety from March
Current and future changes with historical documentation.
A New Year, a new look for BSRIA
As phase 1 of the BSRIA Living Laboratory is completed.
A must-attend event for the architecture industry.
Caroline Gumble to step down as CIOB CEO in 2025
After transformative tenure take on a leadership role within the engineering sector.
RIDDOR and the provisional statistics for 2023 / 2024
Work related deaths; over 50 percent from construction and 50 percent recorded as fall from height.
Solar PV company fined for health and safety failure
Work at height not properly planned and failure to take suitable steps to prevent a fall.
The term value when assessing the viability of developments
Consultation on the compulsory purchase process, compensation reforms and potential removal of hope value.
Trees are part of the history of how places have developed.