Kappa value - thermal mass value
In the Standard Assessment Procedure (SAP) and Simplified Building Energy Model (SBEM), used to demonstrate compliance with Part L of the building regulations, k-value (short for Kappa value or thermal mass value) refers to the heat capacity per square metre of a material, measured in kJ/m2K. This is used to quantify the thermal mass of building elements such as walls and floors. The higher the k-value, the greater the thermal mass, that is the more heat the element is able to store.
Thermal mass can be used to even out variations in internal and external conditions, absorbing heat as temperatures rise and releasing it as they fall. In building design, this can useful for evening out and delaying extremes in thermal conditions, stabilising the internal environment and so reducing the demand for building services systems.
Typical K-values might be (ref the Concrete Centre SAP 2009 – Fabric energy efficiency & thermal mass):
- Timber frame wall: 9 kJ/m2K.
- Dense concrete block wall with a plaster finish: 190 kJ/m2K.
- Timber floor/ceiling: 9/18 kJ/m2K.
- Concrete floor/celing: 120/160 kJ/m2K.
The kappa value (k) of a material is calculated as:
k = 10-6 × Σ (dj rj cj) (ref BuildDesk)
where:
- dj is the thickness of a layer (mm)
- rj is density of a layer (kg/m³)
- cj is specific heat capacity of a layer (J/kg·K)
The limiting value for thickness is where:
- The total thickness of the layers exceeds 100mm.
- Or, the mid-point of the construction is reached.
- Or an insulation layer is reached.
Following the Standard Assessment Procedure, k-values are used to determine a Thermal Mass Parameter (TMP, expressed in J/m2K), which is used to calculate the contribution of thermal mass to the efficiency of the dwelling. TMP is calculated from the sum of the area x heat capacity of all construction elements, divided by total floor area of the dwelling (TFA).
NB Rather confusingly, the term k-value (sometimes referred to as a k-factor or lambda value λ) is also used to refer to the thermal conductivity of a material, that is, how easily heat passes across it. This is a fundamental property, independent of the quantity of material. It represents the steady-state heat flow through a unit area of a material resulting from a temperature gradient perpendicular to that unit area. It is expressed in W/mK.
NB see k-value for alternative meaning.
[edit] Related articles on Designing Buildings Wiki
Featured articles and news
Art of Building CIOB photographic competition public vote
The last week to vote for a winner until 10 January 2025.
The future of the Grenfell Tower site
Principles, promises, recommendations and a decision expected in February 2025.
20 years of the Chartered Environmentalist
If not now, when?
Journeys in Industrious England
Thomas Baskerville’s expeditions in the 1600s.
Top 25 Building Safety Wiki articles of 2024
Take a look what most people have been reading about.
Life and death at Highgate Cemetery
Balancing burials and tourism.
The 25 most read articles on DB for 2024
Design portion to procurement route and all between.
The act of preservation may sometimes be futile.
Twas the site before Christmas...
A rhyme for the industry and a thankyou to our supporters.
Plumbing and heating systems in schools
New apprentice pay rates coming into effect in the new year
Addressing the impact of recent national minimum wage changes.
EBSSA support for the new industry competence structure
The Engineering and Building Services Skills Authority, in working group 2.
Notes from BSRIA Sustainable Futures briefing
From carbon down to the all important customer: Redefining Retrofit for Net Zero Living.
Principal Designer: A New Opportunity for Architects
ACA launches a Principal Designer Register for architects.