Indoor environmental quality
Contents |
[edit] Introduction
With people generally spending more time indoors, and buildings being more tightly constructed and isolated from the external environment, a greater importance is being placed on the indoor environment.
Indoor environmental quality (IEQ) is a general indicator of the quality of conditions inside a building. It can also include functional aspects of space, for example whether the layout provides access to equipment when needed and whether the building has sufficient space for its occupants.
A better indoor environmental quality can enhance the wellbeing of building occupants and help decrease the occurrence of sick building syndrome and building related illness. It can also lead to a decrease in worker complaints and absenteeism which in turn can improve productivity.
[edit] Factors influencing indoor environmental quality
The indoor building environment is complex and there are a variety of factors that can influence its environmental quality.
- Airborne contaminants (gases and particles) from; office equipment, cleaning products, construction activities, furnishings and carpets, water-damaged building materials, microbial growth (fungal, bacterial and mould), outdoor pollutants, and so on.
- Indoor air quality.
- Ventilation.
- Humidity.
- Thermal comfort.
- Daylight, lighting and views.
- Electromagnetic frequency levels.
- Acoustic conditions.
[edit] Optimal indoor environmental quality design
In order to optimise indoor environmental quality, the design and development process should:
- Ensure good quality design, construction, commissioning, operating and maintenance practices.
- Consider aesthetic designs including the importance of views and the integration of natural elements.
- Provide thermal comfort controls for occupants where possible.
- Supply adequate levels and quality of ventilation.
- Prevent airborne bacteria, mould and other fungi through a design that manages moisture sources inside and outside the building.
- Use building products that do not emit pollutants.
- Use sound absorbing/insulating materials to help create optimal acoustic levels.
[edit] Building management to improve indoor environmental quality
There are a number of ways that the indoor environmental quality of existing buildings can be improved, including:
- Using fragrance-free and low VOC (volatile organic compounds) cleaning products.
- Undertaking audits of cleaning products and devising a cleaning plan to replace products with safer alternatives.
- Vacuuming regularly and using vacuums with HEPA (High-efficiency particulate arrestance) filters.
- Ensuring that HVAC equipment is well maintained and working optimally.
- Creating a door and window opening protocol to maintain sufficient air flow.
- Avoiding dust blowing equipment such as leaf blowers and diesel-powered engine equipment.
- When using pesticides, fertilisers and lime applications, ensuring there is little or no wind.
- Maintaining buildings and furnishings to a high standard reducing the need for renovation and remodelling.
- Ensuring filters in HVAC systems are properly maintained.
- Optimising lighting.
[edit] Related articles on Designing Buildings
- Air change rates.
- Air filtration and clean indoor air quality standards.
- Air quality.
- Arrestance.
- BREEAM Indoor air quality plan.
- BREEAM Indoor air quality Ventilation.
- BREEAM Indoor pollutants VOCs.
- BREEAM NOx emissions.
- BS ISO 17772 - Indoor environmental quality.
- BSRIA Noise in the built environment TG 20/2021.
- Building Back Better: Health.
- Building related illness.
- Ensuring good indoor air quality in buildings.
- Environment.
- Health effects of indoor air quality on children and young people.
- Health and wellbeing impacts of natural and artificial lighting.
- HVAC 2030: BSRIA puts opportunities and challenges to the industry.
- Indoor air quality.
- Lighting and health infographic.
- Sick building syndrome.
- TG10 2016 At a glance, wellbeing.
- TSI Environmental dust monitoring system.
- Use of lighting to improve health and wellbeing.
- Ventilation.
- Wellbeing.
Featured articles and news
CIOB and CORBON combine forces
To elevate professional standards in Nigeria’s construction industry.
Amendment to the GB Energy Bill welcomed by ECA
Move prevents nationally-owned energy company from investing in solar panels produced by modern slavery.
Gregor Harvie argues that AI is state-sanctioned theft of IP.
Heat pumps, vehicle chargers and heating appliances must be sold with smart functionality.
Experimental AI housing target help for councils
Experimental AI could help councils meet housing targets by digitising records.
New-style degrees set for reformed ARB accreditation
Following the ARB Tomorrow's Architects competency outcomes for Architects.
BSRIA Occupant Wellbeing survey BOW
Occupant satisfaction and wellbeing tool inc. physical environment, indoor facilities, functionality and accessibility.
Preserving, waterproofing and decorating buildings.
Many resources for visitors aswell as new features for members.
Using technology to empower communities
The Community data platform; capturing the DNA of a place and fostering participation, for better design.
Heat pump and wind turbine sound calculations for PDRs
MCS publish updated sound calculation standards for permitted development installations.
Homes England creates largest housing-led site in the North
Successful, 34 hectare land acquisition with the residential allocation now completed.
Scottish apprenticeship training proposals
General support although better accountability and transparency is sought.
The history of building regulations
A story of belated action in response to crisis.
Moisture, fire safety and emerging trends in living walls
How wet is your wall?
Current policy explained and newly published consultation by the UK and Welsh Governments.
British architecture 1919–39. Book review.
Conservation of listed prefabs in Moseley.
Energy industry calls for urgent reform.