Fire spread in buildings
Contents |
[edit] Introduction
Buildings need to be designed and operated so that they offer an acceptable level of fire safety and minimise the risks from heat and smoke.
Fire occurs as a result of a series of very rapid chemical reactions between a fuel and oxygen that releases heat and light. For combustion to occur, oxygen, heat and a fuel source must all be present. Flames are the visible manifestation of combustion. For more information see: Fire.
Fire spread describes the travel of fire from one area to an adjoining area. Fire spread can occur within buildings and between buildings when combustible material in one area ignites and the fire eventually spreads to an adjoining area.
The rate of fire spread within a building will depend on:
- The degree of fire separation (fire compartmentation) that exists.
- The combustibility of the materials present (some materials such as soft furnishings may burn at faster rates than others).
- The presence of air/oxygen (draughts and convection currents can fuel fires to burn more rapidly).
- The presence of active fire fighting systems to detect and suppress fires.
[edit] How a fire spreads
Fire generally spreads in six ways:
- Direct contact: materials adjacent to each other ignite through a domino-type effect;
- Radiation: when a fire is strong enough, it can emit sufficient radiated heat to ignite combustible materials that are not in direct contact with it. This process is similar to sunlight directed through a lens onto dry straw – the straw will eventually ignite.
- Conduction: heat is transferred through materials that ignite adjacent materials that are in contact. A wall may get so hot that it ignites the wallpaper on the other side.
- Convection: currents of air rise above a fire and may concentrate at an upper limit, eg beneath a ceiling. When substantial hot gas and smoke has accumulated, the temperature at the upper level rises to such an extent that it can set materials on fire, thereby causing a secondary fire and possibly a flashover (below).
- Flashover: the hot air and gases accumulated by convection may eventually start to descend to a lower level through radiation and at sufficiently high temperatures (around 500°C) that may make combustible materials start emitting gases and resulting in spontaneous ignition.
- Backdraught: a fire in a room with little oxygen will start to peter out but if a door opens or glass in a window breaks, the sudden inflow of air/oxygen can reignite the fire with explosive effect.
[edit] Fire safety
The methods of ensuring fire safety are:
- Prevention: Controlling ignition and fuel sources so that fires do not start.
- Communication: If ignition occurs, ensuring occupants are informed and any active fire systems are triggered.
- Escape: Ensuring that occupants of buildings and surrounding areas are able to move to places of safety.
- Extinguishment: Ensuring that fires can be extinguished quickly and with minimum consequential damage.
- Containment: Fires should be contained to the smallest possible area, limiting the amount of property likely to be damaged and the threat to life safety.
The spread of fire can be restricted by sub-dividing buildings into a number of discrete compartments. These fire compartments are separated from one another by compartment walls and compartment floors made of a fire-resisting construction which hinders the spread of fire.
For more information see Fire compartments.
[edit] Related articles on Designing Buildings Wiki
- Automatic fire detection and alarm systems, an introductory guide to components and systems BR 510.
- External fire spread, Supplementary guidance to BR 187 incorporating probabilistic and time-based approaches.
- Fire in buildings.
- Fire compartmentation.
- Fire detection and alarm system.
- Fire protection engineering.
- Fire safety design.
- Understanding the factors affecting flashover of a fire in modern buildings.
Featured articles and news
Designing for neurodiversity: driving change for the better
Accessible inclusive design translated into reality.
RIBA detailed response to Grenfell Inquiry Phase 2 report
Briefing notes following its initial 4 September response.
Approved Document B: Fire Safety from March
Current and future changes with historical documentation.
A New Year, a new look for BSRIA
As phase 1 of the BSRIA Living Laboratory is completed.
A must-attend event for the architecture industry.
Caroline Gumble to step down as CIOB CEO in 2025
After transformative tenure take on a leadership role within the engineering sector.
RIDDOR and the provisional statistics for 2023 / 2024
Work related deaths; over 50 percent from constructuon and 50 percent recorded as fall from height.
Solar PV company fined for health and safety failure
Work at height not properly planned and failure to take suitable steps to prevent a fall.
The term value when assessing the viability of developments
Consultation on the compulsory purchase process, compensation reforms and potential removal of hope value.
Trees are part of the history of how places have developed.
The increasing costs of repair and remediation
Highlighted by regulator of social housing, as acceleration plan continues.
Free topic guide on mould in buildings
The new TG 26/2024 published by BSRIA.
Greater control for LAs over private rental selective licensing
A brief explanation of changes with the NRLA response.
Practice costs for architectural technologists
Salary standards and working out what you’re worth.
The Health and Safety Executive at 50
And over 200 years of Operational Safety and Health.
Thermal imaging surveys a brief intro
Thermal Imaging of Buildings; a pocket guide BG 72/2017.