Electrical resistance meters
Contents |
[edit] Introduction
When identifying rising damp in buildings, architects, surveyors and other consultants may use moisture meters to confirm or obtain a diagnosis. The most common types of moisture meters are carbide meters and electrical resistance meters.
Carbide meters give an accurate measure of moisture content, although they require the removal of a sample - which could be considered destructive. As a result, this method of testing may only be advisable after an electronic resistance meter or some other method has discovered the presence of moisture.
Electrical resistance meters measure dampness either on the surface, or within the building fabric itself. Generally, if the meter reading indicates that the fabric is dry, then it is dry.
[edit] Wood Moisture Equivalent
Electrical resistance meters were developed for use in timber, and if the reading indicates the fabric is wet, this does not necessarily mean that it is wet, as the presence of other substances such as soluble salts will give a similar reading, and in older walls, salts may be present even where damp is not. When using these meters on materials other than wood, the readings will only indicate the presence of moisture as it relates to the moisture content of timber.
The Wood Moisture Equivalent (WME) is the theoretical moisture content - or moisture profile - that the substrate would contain if it were wood.
[edit] How do electrical resistance meters work?
Moisture meters generate readings based on how easily a small electric current can pass through a designated test area. If the current flows easily, this theoretically indicates the presence of moisture. The wetter the material, the more readily the current will flow.
There are two main types of electrical meters that are used for this process: pinned and pinless:
[edit] Pinned meters
Pinned meters take readings by measuring moisture levels recorded from two to four small probes fixed to the meter. These pins are inserted into the test substance, and then an electrical current is sent through the sample area to record electrical resistance or resistivity. This type of meter takes readings for a very specific area and will require multiple measurements which may be considered destructive (since numerous small holes will be created for each reading).
Taking readings with a pinned meter can generally be broken down into four steps:
- The meter should be set to correspond to the type of material being tested.
- The pins of the meter should be perpendicular to the surface and then pushed as far as safely possible into the sample area.
- The reading should be recorded as either a percentage or reference point.
- The process should be repeated in different areas with a concentration of samples in areas, such as around windows, that may be more prone to moisture.
[edit] Pinless meters
Pinless meters use a sensor pad to send an electromagnetic signal to a designated area to assess whether or not moisture is present in a wider area. The sensor’s wave movement data registers the moisture level when contact is made. This method can read depths up to 1.5 inches and does not require an invasive sample.
Taking readings with a pinless meter can also be broken down into four general steps:
- The surface should be cleared of any debris or standing water before a measurement is taken.
- The meter should be positioned and then pressed against the sample area and held until the reading stabilises.
- The reading of moisture content or percentage value should be recorded.
- The meter can be repositioned in other areas of the surface to determine the extent - if any - of moisture present.
[edit] False readings
There is a possibility that electrical resistance meters could deliver inaccurate readings that may be artificially elevated. These can be caused by a number of factors, including:
- Free water in materials caused by condensation, leaks, penetrating damp and other factors.
- Salts that contaminate materials, such as plaster, mortar, brickwork, wallpaper paste and chimneys.
- Materials with metal content, such as foil backed wallpaper, lead based paints and some timber preservatives that contain heavy metals.
- Materials such as clinker blocks and black ash mortar, used in the construction of older properties in certain parts of the country.
All electrical resistance meters should be calibrated before measurements are taken.
For more information see: Assessing moisture in porous building materials.
[edit] Related articles on Designing Buildings Wiki
Featured articles and news
Grenfell Tower Principal Contractor Award notice
Tower repair and maintenance contractor announced as demolition contractor.
Passivhaus social homes benefit from heat pump service
Sixteen new homes designed and built to achieve Passivhaus constructed in Dumfries & Galloway.
CABE Publishes Results of 2025 Building Control Survey
Concern over lack of understanding of how roles have changed since the introduction of the BSA 2022.
British Architectural Sculpture 1851-1951
A rich heritage of decorative and figurative sculpture. Book review.
A programme to tackle the lack of diversity.
Independent Building Control review panel
Five members of the newly established, Grenfell Tower Inquiry recommended, panel appointed.
Welsh Recharging Electrical Skills Charter progresses
ECA progressing on the ‘asks’ of the Recharging Electrical Skills Charter at the Senedd in Wales.
A brief history from 1890s to 2020s.
CIOB and CORBON combine forces
To elevate professional standards in Nigeria’s construction industry.
Amendment to the GB Energy Bill welcomed by ECA
Move prevents nationally-owned energy company from investing in solar panels produced by modern slavery.
Gregor Harvie argues that AI is state-sanctioned theft of IP.
Heat pumps, vehicle chargers and heating appliances must be sold with smart functionality.
Experimental AI housing target help for councils
Experimental AI could help councils meet housing targets by digitising records.
New-style degrees set for reformed ARB accreditation
Following the ARB Tomorrow's Architects competency outcomes for Architects.
BSRIA Occupant Wellbeing survey BOW
Occupant satisfaction and wellbeing tool inc. physical environment, indoor facilities, functionality and accessibility.
Preserving, waterproofing and decorating buildings.