Abiotic depletion potential
Contents |
[edit] Definition
Abiotic depletion refers to the removal of abiotic resources from the earth, or the depletion of non-living natural resources. For materials it is generally measured as abiotic depletion potential (ADP).
[edit] EN 15804:2012+A2:2019/AC:2021
ADP (both fossil and non fossil) are used as environmental impact indicators of EN 15804:2012+A2:2019/AC:2021 which is used as guidance in the generation of the life cycle assessment (LCA) methodology used to create Product Environmental Footprints (PEF). It is also considered to be one of the environmental performance indicators for the calculation, assessment and generation of environmental product declarations (EPDs).
In general it is separated out into two categories, one for non fossil based resources (minerals and metals) and a second for fossil resources. In both cases, it is recommended that assessment of ADP as an environmental impact indicator should be used with care as the uncertainties of the results are high and there is limited experience of its use as an indicator
[edit] Abiotic depletion potential (ADP) for minerals and metals (non-fossil resources)
In the same way that the global warming potential (GWP) of different pollutants are converted to ratios CO2 equivalent figures, ADP values are usually calculated to and equivalent of Antimony or Sb eq. Antimony (Sb) is a chemical element atomic number 51, a gray metalloid, found in nature mainly as the sulfide mineral stibnite. It is about one-fifth as abundant as arsenic, contributing on the average about one gram to every ton of Earth’s crust.
Examples
1 kg antimony = 1 kg Sb eq.
1 kg aluminium = 1.09 * 10^-9 Sb eq.
1 kg silver = 1.18 kg Sb eq.
(ref, ADP minerals & metals, EN 15804. Version: August 2021, Guinée et al. 2002, van Oers et al. 2002, CML 2001 baseline (Version: January 2016)
[edit] Abiotic depletion potential (ADP) for fossil resources
Here the weight of material is converted to its potential energy in unit in megajoules (MJ) equivalent to one million joules.
Examples
1 kg coal hard = 27.91 MJ
1 kg coal soft, lignite = 13.96 MJ
(Refs, ADP fossil resources, EN 15804. Version: August 2021, Guinée et al. 2002, van Oers et al. 2002, CML 2001 baseline (Version: January 2016)
[edit] Related articles on Designing Buildings
Featured articles and news
Homes England creates largest housing-led site in the North
Successful, 34 hectare land acquisition with the residential allocation now completed.
Scottish apprenticeship training proposals
General support although better accountability and transparency is sought.
The history of building regulations
A story of belated action in response to crisis.
Moisture, fire safety and emerging trends in living walls
How wet is your wall?
Current policy explained and newly published consultation by the UK and Welsh Governments.
British architecture 1919–39. Book review.
Conservation of listed prefabs in Moseley.
Energy industry calls for urgent reform.
Heritage staff wellbeing at work survey.
A five minute introduction.
50th Golden anniversary ECA Edmundson apprentice award
Showcasing the very best electrotechnical and engineering services for half a century.
Welsh government consults on HRBs and reg changes
Seeking feedback on a new regulatory regime and a broad range of issues.
CIOB Client Guide (2nd edition) March 2025
Free download covering statutory dutyholder roles under the Building Safety Act and much more.
Minister quizzed, as responsibility transfers to MHCLG and BSR publishes new building control guidance.
UK environmental regulations reform 2025
Amid wider new approaches to ensure regulators and regulation support growth.
BSRIA Statutory Compliance Inspection Checklist
BG80/2025 now significantly updated to include requirements related to important changes in legislation.