Whole life carbon
Whole life, building life cycle or full building carbon assessments consider the combined impacts of both operational and embodied carbon emissions over a building's ent9ire lifecycle, including repair and replacement cycles. Carbon in this case usually refers to carbon dioxide equivalent (CO2e) which is a metric measure used to compare the emissions from various greenhouse gases on the basis of their global-warming potential (GWP), by converting amounts of other gases to the equivalent amount of carbon dioxide ( often shortened to just carbon) with the same global warming potential.
Operational emissions from the use of a building or asset are divided into direct emissions, such as a wood burning stove or gas cooker, called Scope 1 emissions and indirect emissions, from for example electricity used in the dwelling but produced via a coal fired power station, which are called Scope 2 emissions. Embodied or Scope 3 emissions are effectively all other emissions that might relate to the construction of a building, the carbon emissions resulting from the materials, construction and the use of a building over its entire life, including its demolition, disposal or re-use.
A Whole Life Cycle Carbon assessment provides a true picture of a building's carbon impact on the environment and studies will normally divide the whole life assessment into system boundaries from cradle to cradle according to the standard BS EN 15978-1 Sustainability of construction works - Methodology for the assessment of performance of buildings. - Part 1: Environmental Performance. This standard looks at a number of different impact categories across a building life cycle, how ever the same principles are used when the only impact category being studied is carbon equivalent emissions.
Studies have shown that when a building is assessed over a full life cycle of 60 years the carbon emissions that are associated with all processes up to its final completion can be up to 50% of the buildings associated carbon emissions.
There are a number of key documents that are freely available and help explain what whole life carbon is, why it is important and how to calculate it for a building design, some of these are given below.
- The Royal Institution of Chartered Surveyors Whole life carbon assessment for the built environment - RICS V2
- The Royal Institution of British Architects Embodied and whole life carbon assessment for architects
- The Association of Sustainable Buildings Products Whole life carbon measurement: implementation in the built environment
- Low Energy Transformation Initiative https://www.leti.uk/carbonalignment
- The Institution of Structural Engineers https://www.istructe.org/IStructE/media/Public/TSE-Archive/2020/A-brief-guide-to-calculating-embodied-carbon.pdf
NB PAS 2080:2023 Carbon management in buildings and infrastructure, second edition, published by The British Standards Institution in March 2023, defines whole life carbon as the: ‘sum of greenhouse gas emissions and removals from all work stages of a project and/or programme of works within the specified boundaries…. NOTE 1 This includes GHG emissions and removals within the project/programme boundary, as well as emissions/removals between the project/programme and study boundary. NOTE 2 Not to be confused with “design life”, which is the life expectancy of the material/product/asset, as defined by its designers within its specified parameters. Typically, whole life is longer than design life. NOTE 3 Whole life carbon considerations for a project and programme of works are wider than the typical life cycle assessments account for, particularly when considering carbon emissions/removals in their influence at a system level.’
--editor
[edit] Related articles on Designing Buildings
Featured articles and news
Amendment to the GB Energy Bill welcomed by ECA
Move prevents nationally-owned energy company from investing in solar panels produced by modern slavery.
Gregor Harvie argues that AI is state-sanctioned theft of IP.
Heat pumps, vehicle chargers and heating appliances must be sold with smart functionality.
Experimental AI housing target help for councils
Experimental AI could help councils meet housing targets by digitising records.
New-style degrees set for reformed ARB accreditation
Following the ARB Tomorrow's Architects competency outcomes for Architects.
BSRIA Occupant Wellbeing survey BOW
Occupant satisfaction and wellbeing tool inc. physical environment, indoor facilities, functionality and accessibility.
Preserving, waterproofing and decorating buildings.
Many resources for visitors aswell as new features for members.
Using technology to empower communities
The Community data platform; capturing the DNA of a place and fostering participation, for better design.
Heat pump and wind turbine sound calculations for PDRs
MCS publish updated sound calculation standards for permitted development installations.
Homes England creates largest housing-led site in the North
Successful, 34 hectare land acquisition with the residential allocation now completed.
Scottish apprenticeship training proposals
General support although better accountability and transparency is sought.
The history of building regulations
A story of belated action in response to crisis.
Moisture, fire safety and emerging trends in living walls
How wet is your wall?
Current policy explained and newly published consultation by the UK and Welsh Governments.
British architecture 1919–39. Book review.
Conservation of listed prefabs in Moseley.
Energy industry calls for urgent reform.