Using springs in construction to prevent disaster
Contents |
[edit] Introduction
Natural disasters can be devastating for communities and infrastructure. In the past, buildings have been ill-equipped to face earthquakes, hurricanes, and floods, but as technology advances so too does the possibility for greater resilience.
In areas that frequently experience these sorts of conditions, designers are coming up with new and innovative ways to create structures that can withstand such disasters to a certain extent.
[edit] Resisting earthquakes with base isolation
Building structures that are resilient to earthquakes is of utmost importance in some regions, as collapse of structures causes most earthquake-related deaths. As the seismic waves cause the ground to shake, buildings can partially or completely collapse.
There have been a number of solutions suggested or put into practice by architects. One of these methods is known as base isolation and involves using a system of springs or bearings which effectively float the building above its foundations. As the building is attached to the foundations by a flexible yet strong material, when an earthquake hits, the structure is able to move slightly without being disconnected from its foundations.
This method has been used in practice, and a house in Santa Monica, California benefited during the Northridge earthquake of 1994.
[edit] Withstanding typhoon winds with tuned mass dampers
As buildings and structures continue to grow in height, it has become increasingly important to find ways to protect them from strong winds, typhoons and hurricanes.
Taipei 101 is one of the tallest buildings in the world and held the title of world’s tallest building from 2004 to 2010 when Burj Khalifa was constructed.
It stands at 508 m (1,667 ft) tall and has 101 floors. Due to the height of the structure, it was essential to ensure its ability to withstand typhoon winds and earthquake tremors. This was achieved through the installation of a tuned mass damper. These are typically created from concrete blocks which use a spring mechanism to move in opposition to the resonance frequency oscillations of the structures.
The tuned mass damper in the Taipei 101 consists of a steel pendulum weighing 660 metric tonnes. This is suspended from the 92nd to the 88th floor and sways to decrease resonant amplifications of lateral displacements in the building. This movement helps to protect the building from the effects of earthquakes and strong winds.
[edit] Related articles on Designing Buildings Wiki
- Citigroup Center.
- Compression springs.
- Design Flexibility.
- Future Proofing Construction.
- Key qualities of springs.
- Managing and Responding to Disaster.
- Planning for Floods.
- Resilience.
- Risk in Building Design and Construction.
- Spring materials.
- Taipei 101.
- Torsion springs and their benefits.
--European Springs and Pressings Ltd 12:10, 18 Aug 2017 (BST)
Featured articles and news
Twas the site before Christmas...
A rhyme for the industry and a thankyou to our supporters.
Plumbing and heating systems in schools
New apprentice pay rates coming into effect in the new year
Addressing the impact of recent national minimum wage changes.
EBSSA support for the new industry competence structure
The Engineering and Building Services Skills Authority, in working group 2.
Notes from BSRIA Sustainable Futures briefing
From carbon down to the all important customer: Redefining Retrofit for Net Zero Living.
Principal Designer: A New Opportunity for Architects
ACA launches a Principal Designer Register for architects.
A new government plan for housing and nature recovery
Exploring a new housing and infrastructure nature recovery framework.
Leveraging technology to enhance prospects for students
A case study on the significance of the Autodesk Revit certification.
Fundamental Review of Building Regulations Guidance
Announced during commons debate on the Grenfell Inquiry Phase 2 report.
CIAT responds to the updated National Planning Policy Framework
With key changes in the revised NPPF outlined.
Councils and communities highlighted for delivery of common-sense housing in planning overhaul
As government follows up with mandatory housing targets.
CIOB photographic competition final images revealed
Art of Building produces stunning images for another year.
HSE prosecutes company for putting workers at risk
Roofing company fined and its director sentenced.
Strategic restructure to transform industry competence
EBSSA becomes part of a new industry competence structure.
Major overhaul of planning committees proposed by government
Planning decisions set to be fast-tracked to tackle the housing crisis.
Industry Competence Steering Group restructure
ICSG transitions to the Industry Competence Committee (ICC) under the Building Safety Regulator (BSR).
Principal Contractor Competency Certification Scheme
CIOB PCCCS competence framework for Principal Contractors.
The CIAT Principal Designer register
Issues explained via a series of FAQs.
Comments