Using springs in construction to prevent disaster
Contents |
[edit] Introduction
Natural disasters can be devastating for communities and infrastructure. In the past, buildings have been ill-equipped to face earthquakes, hurricanes, and floods, but as technology advances so too does the possibility for greater resilience.
In areas that frequently experience these sorts of conditions, designers are coming up with new and innovative ways to create structures that can withstand such disasters to a certain extent.
[edit] Resisting earthquakes with base isolation
Building structures that are resilient to earthquakes is of utmost importance in some regions, as collapse of structures causes most earthquake-related deaths. As the seismic waves cause the ground to shake, buildings can partially or completely collapse.
There have been a number of solutions suggested or put into practice by architects. One of these methods is known as base isolation and involves using a system of springs or bearings which effectively float the building above its foundations. As the building is attached to the foundations by a flexible yet strong material, when an earthquake hits, the structure is able to move slightly without being disconnected from its foundations.
This method has been used in practice, and a house in Santa Monica, California benefited during the Northridge earthquake of 1994.
[edit] Withstanding typhoon winds with tuned mass dampers
As buildings and structures continue to grow in height, it has become increasingly important to find ways to protect them from strong winds, typhoons and hurricanes.
Taipei 101 is one of the tallest buildings in the world and held the title of world’s tallest building from 2004 to 2010 when Burj Khalifa was constructed.
It stands at 508 m (1,667 ft) tall and has 101 floors. Due to the height of the structure, it was essential to ensure its ability to withstand typhoon winds and earthquake tremors. This was achieved through the installation of a tuned mass damper. These are typically created from concrete blocks which use a spring mechanism to move in opposition to the resonance frequency oscillations of the structures.
The tuned mass damper in the Taipei 101 consists of a steel pendulum weighing 660 metric tonnes. This is suspended from the 92nd to the 88th floor and sways to decrease resonant amplifications of lateral displacements in the building. This movement helps to protect the building from the effects of earthquakes and strong winds.
[edit] Related articles on Designing Buildings Wiki
- Citigroup Center.
- Compression springs.
- Design Flexibility.
- Future Proofing Construction.
- Key qualities of springs.
- Managing and Responding to Disaster.
- Planning for Floods.
- Resilience.
- Risk in Building Design and Construction.
- Spring materials.
- Taipei 101.
- Torsion springs and their benefits.
--European Springs and Pressings Ltd 12:10, 18 Aug 2017 (BST)
Featured articles and news
Shortage of high-quality data threatening the AI boom
And other fundamental issues highlighted by the Open Data Institute.
Data centres top the list of growth opportunities
In robust, yet heterogenous world BACS market.
Increased funding for BSR announced
Within plans for next generation of new towns.
New Towns Taskforce interim policy statement
With initial reactions to the 6 month policy update.
Heritage, industry and slavery
Interpretation must tell the story accurately.
PM announces Building safety and fire move to MHCLG
Following recommendations of the Grenfell Inquiry report.
Conserving the ruins of a great Elizabethan country house.
BSRIA European air conditioning market update 2024
Highs, lows and discrepancy rates in the annual demand.
50 years celebrating the ECA Apprenticeship Awards
As SMEs say the 10 years of the Apprenticeship Levy has failed them.
Nominations sought for CIOB awards
Celebrating construction excellence in Ireland and Northern Ireland.
EPC consultation in context: NCM, SAP, SBEM and HEM
One week to respond to the consultation on reforms to the Energy Performance of Buildings framework.
CIAT Celebrates 60 years of Architectural Technology
Find out more #CIAT60 social media takeover.
The BPF urges Chancellor for additional BSR resources
To remove barriers and bottlenecks which delay projects.
Flexibility over requirements to boost apprentice numbers
English, maths and minimumun duration requirements reduced for a 10,000 gain.
A long term view on European heating markets
BSRIA HVAC 2032 Study.
Humidity resilience strategies for home design
Frequency of extreme humidity events is increasing.
National Apprenticeship Week 2025
Skills for life : 10-16 February
Comments