Smart concrete
Smart concrete technology offers an alternative method for monitoring the health of reinforced concrete structures. It was developed Dr. Deborah D.L. Chung from State University of New York at Buffalo, U.S. The unique benefit of smart concrete is that it is fortified by carbon fiber, which comprises as much as 0.2% to 0.5% of the volume. This can detect stress or strain in concrete structures before they fail. Smart concrete technology has undergone extensive laboratory testing, but is yet to hit the market.
It works by adding a small quantity of short carbon fiber to concrete with a conventional concrete mixer to modify the electrical resistance of the concrete in response to strain or stress. As a result, the contact between the fiber and cement matrix is impacted when the concrete is deformed or stressed, thereby affecting the volume electrical resistivity of the concrete. The strain is then determined by measuring the degree of electrical resistance. Smart concrete is capable of sensing very small structural flaws and hence finds application in checking the internal condition of structures, particularly after an earthquake.
One factor that may contribute to the global smart concrete market is the widespread use of concrete as a composite material and its inability to withstand tension. This necessitates monitoring for cracks to allow timely repair. Other methods to evaluate cracks are by attaching embedding sensors into structures. Sensors, however, cost more to install. Smart concrete is relatively cheaper.
The growth in the smart buildings market is likely to encourage the quick uptake of smart concrete. This is because in addition to their basic functionality of detecting minor cracks, smart concrete also helps to arrest the progress of cracks, reinforcing them to make them stronger. Further, it takes a lot of force for smart concrete to bend, and it is able to accept more energy before fracture.
Smart concrete can also find application in building highways able to detect the position, weight, and speed of vehicles.
[edit] Related articles on Designing Buildings Wiki.
- Cellular concrete.
- Concrete.
- Concrete in aggressive ground (SD 1).
- Concrete-steel composite structures.
- Concrete repair mortars.
- Concrete superplasticizer.
- Glass reinforced concrete.
- Graphene-reinforced concrete.
- Precast concrete.
- Prestressed concrete.
- Reinforced concrete.
- Self-compacting concrete.
- Tilt up construction.
Featured articles and news
Reasons for using MVHR systems
6 reasons for a whole-house approach to ventilation.
Supplementary Planning Documents, a reminder
As used by the City of London to introduce a Retrofit first policy.
The what, how, why and when of deposit return schemes
Circular economy steps for plastic bottles and cans in England and Northern Ireland draws.
Join forces and share Building Safety knowledge in 2025
Why and how to contribute to the Building Safety Wiki.
Reporting on Payment Practices and Performance Regs
Approved amendment coming into effect 1 March 2025.
A new CIOB TIS on discharging CDM 2015 duties
Practical steps that can be undertaken in the Management of Contractors to discharge the relevant CDM 2015 duties.
Planning for homes by transport hubs
Next steps for infrastructure following the updated NPPF.
Access, history and Ty unnos.
The world’s first publicly funded civic park.
Exploring permitted development rights for change of use
Discussing lesser known classes M, N, P, PA and L.
CIOB Art of Building 2024 judges choice winner
Once Upon a Pass by Liam Man.
CIOB Art of Building 2024 public choice winner
Fresco School by Roman Robroek.
HE expands finance alliance to boost SME house building
Project follows on from Habiko public-private place making pension partnership for affordable housing delivery.
Licensing construction; looking back to look forward
Voluntary to required contractors (licensing) schemes.
A contractor discusses the Building Safety Act
A brief to the point look at changes that have occurred.
How orchards can influence planning and development.