Reverberation in buildings
Contents |
[edit] Introduction
Sound is caused by vibrations which transmit through a medium such as air and reach the ear or some other form of detecting device. Sound intensity is measured in Decibels (dB). This is a logarithmic scale in which an increase of 10 dB gives an apparent doubling of loudness.
Approved document E, Resistance to the passage of sound defines 'Reverberation' as the persistence of sound in a space after a sound source has been stopped. Reverberation time is the time, in seconds, taken for the sound to decay by 60dB after a sound source has been stopped.
The reverberation time of a room is linked to the the surfaces that enclose it and the volume of the room by the Sabine equation:
RT = Volume x 0.161 / Total Acoustic Absorption
Image: To control reverberation time, acoustic absorption is used.
Room acoustics / reverberation affects the way a space sounds. A high reverberation time can make a room sound loud and noisy. Speech intelligibility is also a function of reverberation, a high reverberation time causes speech to sound muffled and muddy. Rooms designed for speech therefore typically have a low reverberation time: ≤1 second. A high reverberation time can enhance a music hall by adding richness, depth and warmth to music. A higher level of reverberation within a concert hall is therefore critical.
The illustration below provides indicative reverberation times for a range of building types and room volumes.
[edit] Acoustic properties of materials
To control reverberation time, acoustic absorption is used. Absorbent materials conventionally take two forms; fibrous materials or open-celled foam. Fibrous materials absorb sound as sound waves force the fibres to bend and this bending of the fibres generates heat. The conversion of acoustic energy into heat energy results in the sound effectively being absorbed. In the case of open-celled foam, the air movement resulting from sound waves pushes air particles through the narrow passages which in turn generate a viscous loss along with heat.
Architecturally, fibrous materials and open celled foams are not always considered attractive or robust. It is common therefore to cover these materials with an acoustically transparent finish such as a tissue, cloth or slatted wood, or with perforated materials such as wood, metal, plasterboard and so on.
The thickness of a given material along with properties such as its fibrousity governs its acoustic performance. Finishes within a space are defined in terms of their absorption coefficient. This is a number between 0.0 (100% reflective) for example stone, tiles or concrete and 1.0 (100% absorbent), for example high performance acoustic ceiling tiles, slabs of mineral wool, etc. Products such as carpets typically have an absorption coefficient between 0.1 and 0.3 depending on their thickness. Perforated plasterboard generally provides around 0.6 to 0.7.
It is also common to classify absorbent materials in categories, A to E, where A is highly absorbent and E is almost fully reflective.
This article was created by --MACH Acoustics 11:04, 28 November 2013 (UTC)
[edit] Related articles on Designing Buildings
- Airborne sound.
- Approved Document E.
- Building acoustics.
- Building Bulletin 93: acoustic design of schools.
- Decibel.
- Flanking sound.
- Impact sound.
- Noise nuisance.
- Robust details certification scheme.
- Room acoustics.
- Sound insulation.
- Sound absorption.
- Sound frequency.
- Sound insulation testing.
- Sound power.
- Sound v noise.
- Noise nuisance.
[edit] External references
- MACH Acoustics: Room acoustics and reverberation.
Featured articles and news
The restoration of the novelist’s birthplace in Eastwood.
Life Critical Fire Safety External Wall System LCFS EWS
Breaking down what is meant by this now often used term.
PAC report on the Remediation of Dangerous Cladding
Recommendations on workforce, transparency, support, insurance, funding, fraud and mismanagement.
New towns, expanded settlements and housing delivery
Modular inquiry asks if new towns and expanded settlements are an effective means of delivering housing.
Building Engineering Business Survey Q1 2025
Survey shows growth remains flat as skill shortages and volatile pricing persist.
Construction contract awards remain buoyant
Infrastructure up but residential struggles.
Home builders call for suspension of Building Safety Levy
HBF with over 100 home builders write to the Chancellor.
CIOB Apprentice of the Year 2024/2025
CIOB names James Monk a quantity surveyor from Cambridge as the winner.
Warm Homes Plan and existing energy bill support policies
Breaking down what existing policies are and what they do.
Treasury responds to sector submission on Warm Homes
Trade associations call on Government to make good on manifesto pledge for the upgrading of 5 million homes.
A tour through Robotic Installation Systems for Elevators, Innovation Labs, MetaCore and PORT tech.
A dynamic brand built for impact stitched into BSRIA’s building fabric.
BS 9991:2024 and the recently published CLC advisory note
Fire safety in the design, management and use of residential buildings. Code of practice.