Reverberation in buildings
Contents |
[edit] Introduction
Sound is caused by vibrations which transmit through a medium such as air and reach the ear or some other form of detecting device. Sound intensity is measured in Decibels (dB). This is a logarithmic scale in which an increase of 10 dB gives an apparent doubling of loudness.
Approved document E, Resistance to the passage of sound defines 'Reverberation' as the persistence of sound in a space after a sound source has been stopped. Reverberation time is the time, in seconds, taken for the sound to decay by 60dB after a sound source has been stopped.
The reverberation time of a room is linked to the the surfaces that enclose it and the volume of the room by the Sabine equation:
RT = Volume x 0.161 / Total Acoustic Absorption
Image: To control reverberation time, acoustic absorption is used.
Room acoustics / reverberation affects the way a space sounds. A high reverberation time can make a room sound loud and noisy. Speech intelligibility is also a function of reverberation, a high reverberation time causes speech to sound muffled and muddy. Rooms designed for speech therefore typically have a low reverberation time: ≤1 second. A high reverberation time can enhance a music hall by adding richness, depth and warmth to music. A higher level of reverberation within a concert hall is therefore critical.
The illustration below provides indicative reverberation times for a range of building types and room volumes.
[edit] Acoustic properties of materials
To control reverberation time, acoustic absorption is used. Absorbent materials conventionally take two forms; fibrous materials or open-celled foam. Fibrous materials absorb sound as sound waves force the fibres to bend and this bending of the fibres generates heat. The conversion of acoustic energy into heat energy results in the sound effectively being absorbed. In the case of open-celled foam, the air movement resulting from sound waves pushes air particles through the narrow passages which in turn generate a viscous loss along with heat.
Architecturally, fibrous materials and open celled foams are not always considered attractive or robust. It is common therefore to cover these materials with an acoustically transparent finish such as a tissue, cloth or slatted wood, or with perforated materials such as wood, metal, plasterboard and so on.
The thickness of a given material along with properties such as its fibrousity governs its acoustic performance. Finishes within a space are defined in terms of their absorption coefficient. This is a number between 0.0 (100% reflective) for example stone, tiles or concrete and 1.0 (100% absorbent), for example high performance acoustic ceiling tiles, slabs of mineral wool, etc. Products such as carpets typically have an absorption coefficient between 0.1 and 0.3 depending on their thickness. Perforated plasterboard generally provides around 0.6 to 0.7.
It is also common to classify absorbent materials in categories, A to E, where A is highly absorbent and E is almost fully reflective.
This article was created by --MACH Acoustics 11:04, 28 November 2013 (UTC)
[edit] Related articles on Designing Buildings
- Airborne sound.
- Approved Document E.
- Building acoustics.
- Building Bulletin 93: acoustic design of schools.
- Decibel.
- Flanking sound.
- Impact sound.
- Noise nuisance.
- Robust details certification scheme.
- Room acoustics.
- Sound insulation.
- Sound absorption.
- Sound frequency.
- Sound insulation testing.
- Sound power.
- Sound v noise.
- Noise nuisance.
[edit] External references
- MACH Acoustics: Room acoustics and reverberation.
Featured articles and news
Shortage of high-quality data threatening the AI boom
And other fundamental issues highlighted by the Open Data Institute.
Data centres top the list of growth opportunities
In robust, yet heterogenous world BACS market.
Increased funding for BSR announced
Within plans for next generation of new towns.
New Towns Taskforce interim policy statement
With initial reactions to the 6 month policy update.
Heritage, industry and slavery
Interpretation must tell the story accurately.
PM announces Building safety and fire move to MHCLG
Following recommendations of the Grenfell Inquiry report.
Conserving the ruins of a great Elizabethan country house.
BSRIA European air conditioning market update 2024
Highs, lows and discrepancy rates in the annual demand.
50 years celebrating the ECA Apprenticeship Awards
As SMEs say the 10 years of the Apprenticeship Levy has failed them.
Nominations sought for CIOB awards
Celebrating construction excellence in Ireland and Northern Ireland.
EPC consultation in context: NCM, SAP, SBEM and HEM
One week to respond to the consultation on reforms to the Energy Performance of Buildings framework.
CIAT Celebrates 60 years of Architectural Technology
Find out more #CIAT60 social media takeover.
The BPF urges Chancellor for additional BSR resources
To remove barriers and bottlenecks which delay projects.
Flexibility over requirements to boost apprentice numbers
English, maths and minimumun duration requirements reduced for a 10,000 gain.
A long term view on European heating markets
BSRIA HVAC 2032 Study.
Humidity resilience strategies for home design
Frequency of extreme humidity events is increasing.
National Apprenticeship Week 2025
Skills for life : 10-16 February