Physical environment
The term "physical environment" refers to the external, tangible surroundings and conditions that exist. This might include:
- Natural elements such as landforms (mountains, valleys, plains), bodies of water (oceans, rivers, lakes), the atmosphere (air composition, weather patterns), and geological formations.
- Climate and weather. The climate represents the long-term patterns of weather conditions (temperature, precipitation, humidity, wind) in a particular region, while weather refers to the short-term, day-to-day atmospheric conditions.
- Living organisms such as flora (plants) and fauna (animals).
- Physical properties such as density, temperature, pressure, and electromagnetic properties.
- Natural resources such as minerals, water, forests, and energy sources (fossil fuels, renewable energy).
- Human-made structures such as buildings, roads, bridges, and cities.
Understanding the physical environment is important in various disciplines, including environmental science, ecology, geography, and urban planning. It involves studying the interactions between the natural and human-made components, the impact of environmental changes, and the ways in which organisms and systems adapt and respond to their physical surroundings.
The physical environment plays a crucial role in architecture, engineering, and construction as it influences the design, construction, and functionality of buildings and infrastructure:
- Architects, engineers, and construction professionals consider the physical environment when selecting and analysing potential building sites. Factors such as topography, soil conditions, drainage patterns, access to utilities, and environmental regulations are assessed to determine the feasibility and suitability of a location.
- The physical environment also influences design decisions. Climate, weather patterns, solar orientation, prevailing winds, and temperature fluctuations affect the choice of materials, ventilation, and energy systems. Designing buildings that respond efficiently to the physical environment helps optimise energy consumption, thermal comfort, and overall performance.
- Engineers analyse the physical environment to design structures that can withstand environmental forces. This includes wind loads, seismic activity, snow loads, soil properties and so on. Understanding the physical environment is crucial for ensuring structural integrity and safety.
- The physical environment is central to sustainable design and construction practices. Practitioners aim to minimise the environmental impact of buildings by utilising renewable energy, efficient resource management, and environmentally friendly materials. Environmental assessments, life cycle analyses, and energy modelling are carried out to evaluate the carbon footprint of projects.
- Urban planners consider the physical environment when designing cities and infrastructure systems. Factors such as transportation networks, green spaces, floodplains, and coastal zones influence the layout and functionality of urban areas. Sustainable development, resilience to natural hazards, and efficient infrastructure integration are key considerations.
- The physical environment also affects construction techniques and material choices. For example, the selection of materials may vary based on their durability against weathering, moisture, or extreme temperatures. Construction practices may be adapted to local conditions, such as building techniques for earthquake-prone regions.
Understanding and responding to the physical environment is vital for creating functional, sustainable, and resilient built environments. Architects, engineers, and construction professionals rely on knowledge of the physical environment to ensure the safety, efficiency, and long-term performance of buildings and infrastructure projects.
[edit] Related articles on Designing Buildings
Featured articles and news
CIOB and CORBON combine forces
To elevate professional standards in Nigeria’s construction industry.
Amendment to the GB Energy Bill welcomed by ECA
Move prevents nationally-owned energy company from investing in solar panels produced by modern slavery.
Gregor Harvie argues that AI is state-sanctioned theft of IP.
Heat pumps, vehicle chargers and heating appliances must be sold with smart functionality.
Experimental AI housing target help for councils
Experimental AI could help councils meet housing targets by digitising records.
New-style degrees set for reformed ARB accreditation
Following the ARB Tomorrow's Architects competency outcomes for Architects.
BSRIA Occupant Wellbeing survey BOW
Occupant satisfaction and wellbeing tool inc. physical environment, indoor facilities, functionality and accessibility.
Preserving, waterproofing and decorating buildings.
Many resources for visitors aswell as new features for members.
Using technology to empower communities
The Community data platform; capturing the DNA of a place and fostering participation, for better design.
Heat pump and wind turbine sound calculations for PDRs
MCS publish updated sound calculation standards for permitted development installations.
Homes England creates largest housing-led site in the North
Successful, 34 hectare land acquisition with the residential allocation now completed.
Scottish apprenticeship training proposals
General support although better accountability and transparency is sought.
The history of building regulations
A story of belated action in response to crisis.
Moisture, fire safety and emerging trends in living walls
How wet is your wall?
Current policy explained and newly published consultation by the UK and Welsh Governments.
British architecture 1919–39. Book review.
Conservation of listed prefabs in Moseley.
Energy industry calls for urgent reform.