Mass concrete
[edit] Introduction
The generally accepted and widely-used definition of ‘mass concrete’ is that provided by the American Concrete Institute (ACI). It defines mass concrete as:
“…any volume of structural concrete in which a combination of dimensions of the member being cast, the boundary conditions, the characteristics of the concrete mixture, and the ambient conditions [which] can lead to undesirable thermal stresses, cracking, deleterious chemical reactions, or reduction in the long-term strength as a result of elevated concrete temperature due to heat of hydration.”
The emphasis on thermal behaviour – which can cause a loss of structural integrity and monolithic action – is the only characteristic that distinguishes mass concrete from other concrete work.
Mass concrete is usually associated with large, poured in-situ concrete structures such as dams, bridge piers, foundations to very tall buildings and other large volume placements which are at least 1m-deep. In many cases, mass concrete is unreinforced and therefore strong in compression but weak in tension.
[edit] Hoover Dam
Construction of the Hoover Dam (pictured) on the Colorado River, USA, began in 1931, required enormous quantities of mass concrete (3.3 million cubic metres) to construct its arch-gravity structure. It is 13.7m wide at the top and 201m-wide at the bottom. To dissipate the heat generated by the cooling (setting) of the mass concrete required a vast network of water circulating through steel pipes. Without this, the concrete would still be setting today.
[edit] Related articles on Designing Buildings Wiki
- Admixtures in concrete.
- Cast-in-place concrete.
- Cement mortar.
- Compression.
- Compressive strength.
- Concrete-steel composite structures.
- Concreting plant.
- Laitance.
- Portland cement.
- Precast concrete.
- Prestressed concrete.
- Power float.
- Reinforced concrete.
- Self-compacting concrete.
- Smart concrete.
- Testing concrete.
- The properties of concrete.
- Types of concrete.
Featured articles and news
Designing for neurodiversity: driving change for the better
Accessible inclusive design translated into reality.
RIBA detailed response to Grenfell Inquiry Phase 2 report
Briefing notes following its initial 4 September response.
Approved Document B: Fire Safety from March
Current and future changes with historical documentation.
A New Year, a new look for BSRIA
As phase 1 of the BSRIA Living Laboratory is completed.
A must-attend event for the architecture industry.
Caroline Gumble to step down as CIOB CEO in 2025
After transformative tenure take on a leadership role within the engineering sector.
RIDDOR and the provisional statistics for 2023 / 2024
Work related deaths; over 50 percent from constructuon and 50 percent recorded as fall from height.
Solar PV company fined for health and safety failure
Work at height not properly planned and failure to take suitable steps to prevent a fall.
The term value when assessing the viability of developments
Consultation on the compulsory purchase process, compensation reforms and potential removal of hope value.
Trees are part of the history of how places have developed.
The increasing costs of repair and remediation
Highlighted by regulator of social housing, as acceleration plan continues.
Free topic guide on mould in buildings
The new TG 26/2024 published by BSRIA.
Greater control for LAs over private rental selective licensing
A brief explanation of changes with the NRLA response.
Practice costs for architectural technologists
Salary standards and working out what you’re worth.
The Health and Safety Executive at 50
And over 200 years of Operational Safety and Health.
Thermal imaging surveys a brief intro
Thermal Imaging of Buildings; a pocket guide BG 72/2017.