Internal contaminants and decay of concentration
The impacts of the global pandemic are numerous however one in particular has been a better understanding of the importance of good ventilation in buildings. Specifically the World Health Organisation published information about the airborne transmission of COVID-19, which further emphasises the importance of good, effective ventilation.
One of the specific terms relating to air contamination and the impacts of air replacement can be referred to as decay of concentration, also referred to as half-life which describes the impact air change rates have in the dilution or decay of a contaminant contained with in air.
The decay of the concentration can be expressed by the equation:
- C = Cmax . (e -t/)
- C = [Cmax, 0] as t = [0, ∞)
Where:
- t is the time from the start of the rise or decay (s)
- τ is known as the “half-life” or air change (s)
- C is the concentration at time t (ppm)
- Cmax is the maximum concentration during rise or decay (ppm)
- τ is calculated by:
= V/Q
Where:
- V is the volume of the room (m3)
- Q is the ventilation rate (m3/s)
The initial concentration before any decay, is the maximum concentration described as Cmax. When t=τ (half-life or 1 air change), then the concentration in the room has reduced to 0.37Cmax. and when t=3τ, then the concentration C= 0.05.Cmax. This means that after 3 half-lives, the concentration in the room has been reduced by 95%.
Therefore in practice, 3 τ is considered to be the time to achieve steady state conditions, for a rise, or the time to clear the room, for a decay.
We do have to take into account the fact that the air supplied must be fresh, i.e. not recirculated and that the ventilation must be effective; fresh air must not be short circuited into the extract and it must reach everywhere in the room, to avoid areas of high contaminant concentration (stagnation).
The mechanical air change rate provided by the ventilation system is not often the same as the effective air change rate. The concept of a “mixing factor, k” can be used to describe the quality or effectiveness of the mixing process in a space. Mathematically, Q'=kQ where k = 1 for ideal mixing and k = 0.5 for poor mixing. The effect on decay levels is shown in the following equation:
Where:
- τ’ is the room’s “half-life” (s)
- V is the room’s volume (m3)
- Q is the mechanical, theoretical ventilation rate (m3/s)
- Q’ is the effective ventilation rate (m3/s)
Substituting the k value into the decay equation, the following expression is obtained:
C = Cmax . (e -t.k/)
For example, for a k factor of 0.6, when t=τ(half-life), then the concentration in the room has reduced to 0.55 Cmax, instead of the original 0.37Cmaxand when t=3τ, then the concentration is still 0.17.Cmax, compared to 0.05 for k=1.
This means that it will take longer to purge the contaminant from the room i.e. If the ACR of an isolation room is 10 ACH, for a k value of 0.6, the effective ventilation rate would be 6 ACH.
BSRIA has studied several hospital isolation rooms, with dedicated ventilation. The k factor in those rooms, which were considered well-mixed, was k= 0.8, calculated using gas tracer methodologies.
This is based on an article published on the BSRIA website as "New World Health Organisation information emphasises effective ventilation in buildings" dated June 2020.
[edit] Related articles on Designing Buildings
- Air change rates.
- Air filtration and clean Indoor air quality standards.
- Air tightness in buildings.
- At a glance - Indoor air quality.
- BSRIA articles on Designing Buildings Wiki.
- Ensuring good indoor air quality in buildings.
- HVAC balancing.
- HVAC industry defines post COVID-19 changes.
- Indoor air quality.
- Indoor air velocity.
- Let us evolve our buildings from being passive structures to interactive and reactive systems.
- Mechanical ventilation's role in improving indoor air quality.
- Timber and healthy interiors.
- Ventilation.
- Ventilation and control of COVID-19 transmission.
Featured articles and news
Building Safety recap January, 2026
What we missed at the end of last year, and at the start of this...
National Apprenticeship Week 2026, 9-15 Feb
Shining a light on the positive impacts for businesses, their apprentices and the wider economy alike.
Applications and benefits of acoustic flooring
From commercial to retail.
From solid to sprung and ribbed to raised.
Strengthening industry collaboration in Hong Kong
Hong Kong Institute of Construction and The Chartered Institute of Building sign Memorandum of Understanding.
A detailed description fron the experts at Cornish Lime.
IHBC planning for growth with corporate plan development
Grow with the Institute by volunteering and CP25 consultation.
Connecting ambition and action for designers and specifiers.
Electrical skills gap deepens as apprenticeship starts fall despite surging demand says ECA.
Built environment bodies deepen joint action on EDI
B.E.Inclusive initiative agree next phase of joint equity, diversity and inclusion (EDI) action plan.
Recognising culture as key to sustainable economic growth
Creative UK Provocation paper: Culture as Growth Infrastructure.
Futurebuild and UK Construction Week London Unite
Creating the UK’s Built Environment Super Event and over 25 other key partnerships.
Welsh and Scottish 2026 elections
Manifestos for the built environment for upcoming same May day elections.
Advancing BIM education with a competency framework
“We don’t need people who can just draw in 3D. We need people who can think in data.”
Guidance notes to prepare for April ERA changes
From the Electrical Contractors' Association Employee Relations team.
Significant changes to be seen from the new ERA in 2026 and 2027, starting on 6 April 2026.
First aid in the modern workplace with St John Ambulance.
Solar panels, pitched roofs and risk of fire spread
60% increase in solar panel fires prompts tests and installation warnings.
Modernising heat networks with Heat interface unit
Why HIUs hold the key to efficiency upgrades.
























