Fracture point
The fracture point (similar to the yield point) describes a solid material’s elastic limit, which is the maximum stress per unit area it can withstand before there is permanent deformation or fracture. In other words, it is the limit of the material’s elasticity, for up to that point, the solid can resume its original shape when the load is removed; after that point, it undergoes permanent (plastic) deformation and will not return to its original shape even after the load (yield load) has been removed. For example where a timber beam might bow under a weight but will return to its original straight shape once the load is removed.
However no structural material exhibits perfect elasticity: depending on the type of structure and the material, permanent deformations are often unavoidable whenever loads exceed certain values. That is why engineers design structures to ensure the materials are being used within their elastic range and the loads involved will not produce permanent deformations. All structural materials behave plastically beyond their elastic range.
However, even if some materials show elastic behaviour, they may – after a long period of service, usually many years – exhibit a degree of plastic flow (or creep). In the example of the timber beam bowing, if the weight remains for sometime and is then removed the beam may remain bowed, showing signs of creep, this may also be the case with timber beams bowing over time from a combination of self weight, angle of cut and drying out.
On a graph showing a stress-strain curve, the point of the limit of elastic behaviour is called the ‘yield point’ and this is where plastic deformation begins – some of this deformation will be plastic and irreversible. In structural engineering, the yield point is regarded as a ‘soft failure’ mode which does not usually cause catastrophic or ultimate failure, it might be described as ductile fracture depending on the material, or a brittle fracture. This is effect the fracture point, where the material starts to break, either gradually or quickly, the behaviour depending on the material and stresses, the breaking point might be where a timber beam goes beyond, the yield, soft or ductile failure and brittle or fracture points to break and collapse.
[edit] Related articles on Designing Buildings
- Brittle fracture.
- Concept structural design.
- Detailed design.
- Ductile fracture.
- Elements of structure in buildings.
- Elasticity.
- Elastic limit.
- Moment.
- Stiffness.
- Structural engineer.
- Structural principles.
- Structural systems for offices.
- Structural vibration.
- Structures at the end of their design life.
- The development of structural membranes.
- Types of structural load.
- Vibrations.
- Yield point.
Featured articles and news
HSE simplified advice for installers of stone worktops
After company fined for repeatedly failing to protect workers.
Co-located with 10th year of UK Construction Week.
How orchards can influence planning and development.
Time for knapping, no time for napping
Decorative split stone square patterns in facades.
A practical guide to the use of flint in design and architecture.
Designing for neurodiversity: driving change for the better
Accessible inclusive design translated into reality.
RIBA detailed response to Grenfell Inquiry Phase 2 report
Briefing notes following its initial 4 September response.
Approved Document B: Fire Safety from March
Current and future changes with historical documentation.
A New Year, a new look for BSRIA
As phase 1 of the BSRIA Living Laboratory is completed.
A must-attend event for the architecture industry.
Caroline Gumble to step down as CIOB CEO in 2025
After transformative tenure take on a leadership role within the engineering sector.
RIDDOR and the provisional statistics for 2023 / 2024
Work related deaths; over 50 percent from construction and 50 percent recorded as fall from height.
Solar PV company fined for health and safety failure
Work at height not properly planned and failure to take suitable steps to prevent a fall.
The term value when assessing the viability of developments
Consultation on the compulsory purchase process, compensation reforms and potential removal of hope value.
Trees are part of the history of how places have developed.