Egg-shell concrete
Egg-shell concrete describes the use of crushed eggshell powder as a supplementary cement materials (SCM) helping to improve strength and or reduce the amount of ordinary Portland cement required.
The history of supplementary cementing materials in construction originated with the ancient Greeks who used volcanic ash and hydraulic lime to create cement mortars, and then teh Romans created what we know call Roman concrete, for which the Coliseum is well known, Supplementary cementing materials (SCMs) are materials that when used with Portland cement can contribute to the properties of hardened concrete through hydraulic or pozzolanic activity or both. Most commonly fly ash, ground granulated blast furnace slag (GGBFS) and silica fume are but also some research has been carried out on the use of other waste products including egg-shells as well as saw dust ash, rice husk ash, and sugarcane bagasse ash.
The Magazine of Concrete Research; Eggshell as a partial cement replacement in concrete development (Yeong Yu Tan Shu Ing Doh Siew Choo Chin)
"Research on the reuse of waste materials in the concrete industry has been quite intensive in the past decade. The objective of this research is to identify the performance of oven-dried eggshell powder as a partial cement replacement in the production of concrete under both water-cured and air-cured regimes. Eggshell powder of various amounts, namely 5%, 10%, 15% and 20% by volume, was added as a replacement for ordinary Portland cement."
"The results showed that water-cured eggshell concrete greatly improved the compressive and flexural strength of concrete, by up to 51·1% and 57·8%, respectively. The rate of water absorption of eggshell concrete was reduced by approximately 50%, as eggshell powder filled up the existing voids, making it more impermeable. However, the compressive strength of the eggshell concrete decreases gradually when the amount of eggshell powder increased, during immersion in acid and alkali solutions, because eggshell contains a high amount of calcium, which reacts readily with acid and alkali solutions."
"As the eggshell content increases, the solution reacts with the paste so the bonding of the paste reduces, and therefore the strength also reduces. The reduction of compressive strength during immersion in sulphuric solution and sodium sulphate solution was 27·5% and 31·2%, respectively, when 20% eggshell powder was used to replace cement. It can be concluded that the optimum percentage of oven-dried eggshell powder as a partial cement replacement is 15%."
[edit] External links
Featured articles and news
CIOB launches global mental health survey
To address the silent mental health crisis in construction.
New categories in sustainability, health and safety, and emerging talent.
Key takeaways from the BSRIA Briefing 2024
Not just waiting for Net Zero, but driving it.
The ISO answer to what is a digital twin
Talking about digital twins in a more consistent manner.
Top tips and risks to look out for.
New Code of Practice for fire and escape door hardware
Published by GAI and DHF.
Retrofit of Buildings, a CIOB Technical Publication
Pertinent technical issues, retrofit measures and the roles involved.
New alliance will tackle skills shortage in greater Manchester
The pioneering Electrotechnical Training and Careers Alliance.
Drone data at the edge: three steps to better AI insights
Offering greater accuracy and quicker access to insights.
From fit-out to higher-risk buildings.
Heritage conservation in Calgary
The triple bottom line.
College of West Anglia apprentice wins SkillELECTRIC gold.
Scottish government launch delivery plan
To strengthen planning and tackle the housing emergency.
How people react in ways which tend to restore their comfort.
Comfort is a crucial missing piece of the puzzle.
ECA launches Recharging Electrical Skills Charter in Wales
Best solutions for the industry and electrical skills in Wales.
New homebuilding skills hub launch and industry response
Working with CITB and NHBC to launch fast track training.