Alternating current and direct current
The sinusoidal curve that represents the positive and negative phases of AC current. |
Contents |
[edit] Introduction
An electric current is a flow of charge along a conductor, such as a copper wire. When it flows in one direction it is called direct current (DC). When it reverses direction periodically it is termed an alternating current (AC).
AC current is generally used to power homes and businesses, and is also present when audio and radio signals are carried on electrical wires. DC current is typical of batteries that power flashlights and other home appliances and is also used in some industrial applications.
Because AC current reverses direction periodically, it can be characterised by a sinusoidal waveform where the half periods above the x-axis represent the positive phase of the current and the half periods below the x-axis represent the negative phase.
AC current operates in the following way: it will start from a position of zero, build up to its maximum value (top of the positive peak on the sinusoidal curve), reverse to zero, continue to the maximum in the opposite direction (negative, below the x-axis) then reverse back to zero, upon which the cycle begins again. The number of these cycles performed per second is called the frequency and is measured in hertz (Hz).
Domestic and commercial power in the UK and other countries is typically of low frequency (50-60Hz). Far higher frequencies are encountered in other applications such as television (100,000,000 cycles/second (100 megahertz (or 100MHz) where 1MHz is one million cycles/second)). Even higher frequencies of several thousand megahertz are used in microwave and radar applications, while in mobile phones they may be in the order of around 1,000MHz (one thousand million hertz or 1 gigahertz (GHz).
Many electronic devices contain semi-conductors which require low-voltage DC. This means that such devices must convert high voltage AC to low voltage DC. This is usually achieved by the plug-in power plug that is supplied with the device.
[edit] Some advantages of AC over DC
AC current offers numerous benefits over DC. Typically, these include:
- AC can be relatively easily and economically stepped up or down with a transformer to suit the application. DC cannot be wired through a transformer.
- Because it can be stepped up (and down), AC can be increased to high voltage levels for transmission over large distances, then stepped down to safer levels for consumer use.
- High voltages can be generated in AC. This is more difficult with DC.
- Because of the high voltages that can be generated, AC can be transmitted over long distances.
- Long-range transmission results in relatively low energy losses resulting from resistance.
- AC is cheaper to generate than DC.
- AC can be easily converted to DC if required.
[edit] DC networks
The Energy Saving Trust estimated in 2007 that by 2020, 45% of the electricity consumption in a household would be entertainment, computers and gadgets and LED lighting, all of which are DC-powered. This, in combination with the emergance of DC generation from solar panels, and battery storage, have given rise to the concept of DC (rather than AC) networks.
For more information see: DC electricity networks.
[edit] Related articles on Designing Buildings Wiki
- DC electricity networks.
- Electricity supply.
- Energy consumption.
- Energy storage.
- Fossil fuel.
- Hydroelectricity.
- Micro-grids.
- Microgeneration.
- Oil - a global perspective.
- Power.
- PV inverter.
- Renewable energy.
- Single-phase v three-phase ac current systems.
- Solar photovoltaics.
- The future of UK power generation.
- Types of fuel.
- Watt.
Featured articles and news
Designing for neurodiversity: driving change for the better
Accessible inclusive design translated into reality.
RIBA detailed response to Grenfell Inquiry Phase 2 report
Briefing notes following its initial 4 September response.
Approved Document B: Fire Safety from March
Current and future changes with historical documentation.
A New Year, a new look for BSRIA
As phase 1 of the BSRIA Living Laboratory is completed.
A must-attend event for the architecture industry.
Caroline Gumble to step down as CIOB CEO in 2025
After transformative tenure take on a leadership role within the engineering sector.
RIDDOR and the provisional statistics for 2023 / 2024
Work related deaths; over 50 percent from constructuon and 50 percent recorded as fall from height.
Solar PV company fined for health and safety failure
Work at height not properly planned and failure to take suitable steps to prevent a fall.
The term value when assessing the viability of developments
Consultation on the compulsory purchase process, compensation reforms and potential removal of hope value.
Trees are part of the history of how places have developed.
The increasing costs of repair and remediation
Highlighted by regulator of social housing, as acceleration plan continues.
Free topic guide on mould in buildings
The new TG 26/2024 published by BSRIA.
Greater control for LAs over private rental selective licensing
A brief explanation of changes with the NRLA response.
Practice costs for architectural technologists
Salary standards and working out what you’re worth.
The Health and Safety Executive at 50
And over 200 years of Operational Safety and Health.
Thermal imaging surveys a brief intro
Thermal Imaging of Buildings; a pocket guide BG 72/2017.