PV inverter
A PV inverter is an electronic device that converts the DC supplied by photovoltaic (PV) panels to AC which is then normally fed to the 230 V mains supply.
PV inverters are usually configured as a string inverter where all the PV panels are connected in series, or they can be much smaller, a micro-inverter, and assigned to each individual PV panel.
PV inverters generally consist of three distinct stages. Firstly the variable DC output from the PV is fed to a DC to DC converter the output of which is then converted to 230 V AC by a DC to AC converter using high frequency Pulse Width Modulation. The performance of the whole inverter is managed by a real-time micro-controller that by executing a number of control scenarios fulfils all the power management and communication functions required, including:
- Continuously varying the input impedance of the DC to DC converter to ensure that the point of maximum power is maintained irrespective of PV operating conditions, for example, panel temperature and shading. This function is called MPPT (Maximum Power Point Tracking).
- Ensuring that the AC output connected to the grid is synchronised and at the appropriate voltage and frequency to enable power to be exported from the inverter to the domestic network or, if not required locally, exported to the grid.
- Managing battery storage if fitted.
- System configuration and communications.
Both string inverters and micro-inverters have their own pros and cons:
- A single larger inverter can be more cost effective than many smaller units.
- If a micro-inverter fails the output from just one panel is lost having little impact on the overall output.
- Micro-inverters are typically mounted on the back of each PV panel often in a harsh and difficult location to access thereby making replacement difficult should they fail.
- If one panel in a string becomes shaded it reduces the output of the whole string whereas with micro-inverters just the output from that one panel is reduced.
A typical domestic string inverter will have a rating of approximately 1.5 to 4 kWp and a maximum DC input voltage of 500 V or above allowing for a number of panels, typically around 30 V, to be connected in series. By comparison micro-inverters, being dedicated to one panel, have a rating of typically around 250 W and a maximum DC input voltage of approximately 45 V. The output of each micro-inverter is typically 230 V AC which is connected to the domestic network via an interface box.
Currently, (2014) inverters can have an efficiency of well over 90 per cent at 20 per cent of rated output rising to over 95 per cent at 40 per cent output and above (European Weighted Efficiency [60]).
This article was created by --BRE. It was taken from The future of electricity in domestic buildings, a review, by Andrew Williams, published in November 2014.
[edit] Related articles on Designing Buildings Wiki
- Battery energy storage systems with grid-connected solar photovoltaics BR 514.
- BRE photovoltaic certification scheme.
- Code of practice for grid connected solar photovoltaic systems.
- DC electricity networks.
- DC isolators for photovoltaic systems (FB 68).
- Feed in tariff.
- Large scale solar thermal energy.
- Solar photovoltaics.
- Solar thermal systems.
- Switchgear.
- The future of electricity in domestic buildings, a review.
- Zero carbon homes.
- Zero carbon non-domestic buildings.
[edit] External references
- [60] Brundlinger R et al. prEN 50530 – The New European Standard for Performance Characterisation of PV inverters. EU PVSEC Proceedinngs. Accessed 8 January 2014. Downloaded from http://www.eupvsec-proceedings.com/proceedings?paper=4741
Featured articles and news
Local leaders gain new powers to support local high streets
High Street Rental Auctions to be introduced from December.
Infrastructure sector posts second gain for October
With a boost for housebuilder and commercial developer contract awards.
Sustainable construction design teams survey
Shaping the Future of Sustainable Design: Your Voice Matters.
COP29; impacts of construction and updates
Amid criticism, open letters and calls for reform.
The properties of conservation rooflights
Things to consider when choosing the right product.
Adapting to meet changing needs.
London Build: A festival of construction
Co-located with the London Build Fire & Security Expo.
Tasked with locating groups of 10,000 homes with opportunity.
Delivering radical reform in the UK energy market
What are the benefits, barriers and underlying principles.
Information Management Initiative IMI
Building sector-transforming capabilities in emerging technologies.
Recent study of UK households reveals chilling home truths
Poor insulation, EPC knowledge and lack of understanding as to what retrofit might offer.
Embodied Carbon in the Built Environment
Overview, regulations, detail calculations and much more.
Why the construction sector must embrace workplace mental health support
Let’s talk; more importantly now, than ever.
Ensuring the trustworthiness of AI systems
A key growth area, including impacts for construction.
Foundations for the Future: A new model for social housing
To create a social housing pipeline, that reduces the need for continuous government funding.
Mutual Investment Models or MIMs
PPP or PFI, enhanced for public interest by the Welsh Government.
Key points and relevance to construction of meeting, due to reconvene.