Building services compliance with the building regulations
The article originally appeared as a Proving the future – how to keep up with Building Regulations published in January 2014. It was written by Mike Smith, Engineering Director at BSRIA.
The rapid adoption of airtightness testing and the ability of the industry to achieve the right result first time in 89% of tests is one of the success stories of the UK construction industry over the past decade. The BSRIA Compliance team tested over 10,000 dwellings and 720 non-dwellings in 2012 and found the average dwelling airtightness value was 4.89 m3/(hr.m2) envelope area at 50 Pa (against a maximum regulatory value of 10 m3/(hr.m2)).
From a standing start in 2006, builders have grasped the importance of airtightness testing as a proxy for quality of construction and the contribution good airtightness makes to energy efficiency. The testing itself is rigorous, robust and, arguably, now at a very low economic price. It has respectability provided by UKAS (United Kingdom Accreditation Service) accreditation for non-dwellings testing, the training of testers and, in the case of dwelling testing, registered testers through the Airtightness Testing and Measurement Association (part of the British Institute for Non-Destructive Testing).
The mantra should be “Build tight, ventilate right”. As fabric standards improve, driven on further by the 2013 Building Regulations, the role of passive and mechanical ventilation systems increases in importance. Unfortunately in the world of unintended consequences, we are seeing dwellings achieving better airtightness values than the designer intended which of course means less air leakage (and associated energy waste), but this is only useful if the designed-in ventilation systems can cope with these outcomes. In a nutshell the infrastructure supporting domestic ventilation engineering has not developed at the same pace as the improvement in building airtightness.
There is of course significant current activity to help remedy this problem but, as is so often the case, we are now on the back foot with increasing numbers of examples of poor installations and the inevitable questioning of the value of mechanical ventilation solutions.
The systems we are talking about are not complex but they are sensitive to errors. What is missing is not so much the technology or science but the widespread creation and adoption of proper codes of practice. Mechanical ventilation (MV) systems and the more complex MV heat recovery (MVHR) systems have to be site tested to ensure they are extracting and supplying appropriate amounts of ventilation. In the course of its compliance testing BSRIA is seeing two main kinds of problems.
The first is the performance of the specified equipment in a given situation, i.e. that the fan is correctly selected to match both the actual application and the inherent system losses that the system components will introduce. In simple terms this comes down to understanding the resistance characteristics of ductwork and its routing and the resistance of terminal units both inside and out. There is a widespread misunderstanding that ventilation fan outputs are usually quoted with outputs measured in “free air”. In reality they have to overcome backpressures from fittings. Even where kits are bought we see alternative terminal units used, usually to meet architects demands for aesthetics.
The second is the actual installation of the associated ductwork where there is a very poor understanding of the dramatic effect on performance that can arise from bad workmanship.
In a recent case BSRIA found approximately one metre of flexible ductwork that had been stuffed into the cavity wall for a straight through the wall installation that is approximately 300 mm thick. An additional 100 mm dogleg had been introduced on site to match the actual positioning of a porch structure. The result was a lot of fan noise with almost zero movement. The fan, when bench tested with zero back pressure, had a performance of 22 l/s, the designed performance including the ducting was 20 l/s however the actual performance was 5 l/s.
As part of the “catch up” in dealing with the rapid rise in the use of domestic ventilation we have identified that the act of measuring MVHR performance using published guidelines will give false results if the correct equipment or correction factors are not used. There is an easy remedy but not widely used at present. The automatic volume flow meter with pressure compensation – more commonly known as a “powered diff” will provide an instantaneous and accurate value. A more common hooded anemometer will impose a back pressure on the terminal, ducting and fan under test and the readings must be corrected (post use) specifically for both the anemometer model and the actual fan under test. More detail on this can be found in BSRIA’s “Domestic Ventilation Systems – a guide to measuring airflow rates – BG46/2013”.
And all of this is compounded by a lack of thinking regarding operational needs, limited controls, and poor instructions to the user, especially on what maintenance is required to keep performance at its peak.
So, airtightness demands have led to unforeseen consequences and something of a reaction against the use of mechanical ventilation. What then can be done to avoid making the same mistakes on other systems and concepts?
With fabric issues now largely dealt with in the Building Regulations it is likely that new focus will fall on the efficiency and operation of the MEP (Mechanical Electrical and Plumbing) services in dwellings. If modelling and measuring the thermodynamics of a brick wall is difficult, imagine how complex a multivalent heating system is going to be. And before being put into use, these complex integrated systems will need commissioning and possibly proving as well.
The Zero Carbon Hub has recognised that we will need to devise new test methods and regimes that, for example, will evaluate how the solar thermal collector performance meets expectations when linked with the ground source heat pump system that serves hot water generation, underfloor heating and thermal storage, in concert with a biomass boiler or room heater. Before regulation stimulates the market we need to have good practice guidance and proven on-site commissioning and test processes in place. This work is urgent and needs significant central support. With the next revision of Part L expected for 2016 – this time aimed at achieving zero (or nearly) carbon homes, time is not available to embark on a protracted negotiation with innumerable and varied industrial interests. Certainly industry’s support will be available but only for a properly directed and centrally funded programme.
If we fail to put into place a mechanism to improve the on-site verification of performance of new systems we will only have ourselves to blame for the next set of well publicised “failures to launch” and the consequent set back of achieving national aims.
--BSRIA
[edit] Related articles on Designing Buildings
- Air permeability testing.
- Air tightness in buildings.
- Confirming knowledge of building services.
- Detailed services design.
- Domestic building services compliance guide.
- Energy audit.
- Energy Performance Certificates.
- Joined-up thinking is key to building safely.
- Non-domestic building services compliance guide.
- Performance gap.
- Site inspections.
- Thermographic survey.
- The history of non-domestic air tightness testing.
- Types of building services.
- United Kingdom Accreditation Service UKAS.
- Workmanship.
Featured articles and news
Twas the site before Christmas...
A rhyme for the industry and a thankyou to our supporters.
Plumbing and heating systems in schools
New apprentice pay rates coming into effect in the new year
Addressing the impact of recent national minimum wage changes.
EBSSA support for the new industry competence structure
The Engineering and Building Services Skills Authority, in working group 2.
Notes from BSRIA Sustainable Futures briefing
From carbon down to the all important customer: Redefining Retrofit for Net Zero Living.
Principal Designer: A New Opportunity for Architects
ACA launches a Principal Designer Register for architects.
A new government plan for housing and nature recovery
Exploring a new housing and infrastructure nature recovery framework.
Leveraging technology to enhance prospects for students
A case study on the significance of the Autodesk Revit certification.
Fundamental Review of Building Regulations Guidance
Announced during commons debate on the Grenfell Inquiry Phase 2 report.
CIAT responds to the updated National Planning Policy Framework
With key changes in the revised NPPF outlined.
Councils and communities highlighted for delivery of common-sense housing in planning overhaul
As government follows up with mandatory housing targets.
CIOB photographic competition final images revealed
Art of Building produces stunning images for another year.
HSE prosecutes company for putting workers at risk
Roofing company fined and its director sentenced.
Strategic restructure to transform industry competence
EBSSA becomes part of a new industry competence structure.
Major overhaul of planning committees proposed by government
Planning decisions set to be fast-tracked to tackle the housing crisis.
Industry Competence Steering Group restructure
ICSG transitions to the Industry Competence Committee (ICC) under the Building Safety Regulator (BSR).
Principal Contractor Competency Certification Scheme
CIOB PCCCS competence framework for Principal Contractors.
The CIAT Principal Designer register
Issues explained via a series of FAQs.