Performance gap between building design and operation
There is significant evidence to suggest that buildings do not perform as well when they are completed as was anticipated when they were being designed. The difference between anticipated and actual performance is known as the performance gap.
Findings from studies such as PROBE (Post Occupancy Review of Buildings and their Engineering) which assessed 23 buildings previously featured as ‘exemplar designs’ in the Building Services Journal between 1995 and 2002, revealed that actual energy consumption in buildings is often twice as much as predicted.
More recent studies have suggested that in-use energy consumption can 5 to 10 times higher than compliance calculations carried out during the design stage:
- The Zero Carbon Hub Closing the gap between design and as-built performance, Evidence review report.
- Innovate UK's Building Performance Evaluation Programme.
- The Carbon Trust‘s Closing the gap, Lessons learned on realising the potential of low carbon building design.
- Carbon Buzz, Performance gap benchmarking data.
Studies such as these suggest that factors contributing to the performance gap include:
- A lack of monitoring and feedback following occupancy, meaning that problems are rarely identified, user behaviour is not corrected and lessons are not learned for future projects.
- Design assumptions do not properly reflect the in-use performance of buildings.
- Designers are rarely required to predict actual in-use energy consumption.
- Calculations for regulatory compliance do not account for all energy uses in buildings. These calculations are commonly misinterpreted as predictions of in-use energy consumption, when in fact they are simply mechanisms for complying with the Building Regulations.
- Unregulated sources of energy consumption such as small power loads, server rooms, external lighting, and so on are rarely considered at the design stage. Yet these typically account for more than 30% of the energy consumption in office buildings.
- The lack of guidance for modelling unregulated energy loads makes it difficult for designers to consider these at design stage.
- There are discrepancies between design specification and the specification and quality of works as-built.
- There are incorrect assumptions about the performance of some building components (such as party walls).
- There are rarely any consequences for designers, contractors and suppliers when energy consumption exceeds predictions.
- Project participants struggle to communicate the intended energy performance for the design from the earliest stages, and have ongoing problems with communicating the design intent throughout detailed design.
- There is poor feedback from site about what is, and what is not buildable.
- Site practices that may have been acceptable 20 years ago, no longer meet the required standards.
- There is an absence of engineering rigour around the design and installation of the services.
NB: In November 2015, BSRIA announced that it would back a four-month feasibility study to develop a prototype UK scheme intended to deliver the standard of energy performance specified in client briefs by adopting a ‘design for performance’ approach, first pioneered in Australia. See BSRIA support study into Australian solution to performance gap for more information.
[edit] Related articles on Designing Buildings
- Achieving sustainable futures with thermal imaging.
- Building data exchange.
- Building performance.
- Building performance evaluation programme.
- Building performance metrics.
- Building regulations.
- BREEAM.
- Closing the gap between design and as-built performance.
- Co-heating test.
- Code for sustainable homes.
- Domestic ventilation systems performance.
- Energy performance certificate.
- Energy Savings Opportunity Scheme.
- Facilities management audit FMA.
- Green building.
- Leadership in Energy and Environmental Design.
- Mind the (performance) gap.
- Performance.
- Performance of exemplar buildings in use: Bridging the performance gap FB 78.
- Performance requirements.
- Quad Central in Malta aims for LEED Platinum certification.
- Retrofit, refurbishment and the growth of connected HVAC technology.
- Soft landings.
- Strategic performance targets.
- The effects of subframe systems on the overall thermal performance of external rainscreen walls.
- The history of non-domestic air tightness testing.
- Thermal imaging to improve energy efficiency in building design.
- Why the UK needs to support emerging tech like energy storage.
Featured articles and news
The restoration of the novelist’s birthplace in Eastwood.
Life Critical Fire Safety External Wall System LCFS EWS
Breaking down what is meant by this now often used term.
PAC report on the Remediation of Dangerous Cladding
Recommendations on workforce, transparency, support, insurance, funding, fraud and mismanagement.
New towns, expanded settlements and housing delivery
Modular inquiry asks if new towns and expanded settlements are an effective means of delivering housing.
Building Engineering Business Survey Q1 2025
Survey shows growth remains flat as skill shortages and volatile pricing persist.
Construction contract awards remain buoyant
Infrastructure up but residential struggles.
Home builders call for suspension of Building Safety Levy
HBF with over 100 home builders write to the Chancellor.
CIOB Apprentice of the Year 2024/2025
CIOB names James Monk a quantity surveyor from Cambridge as the winner.
Warm Homes Plan and existing energy bill support policies
Breaking down what existing policies are and what they do.
Treasury responds to sector submission on Warm Homes
Trade associations call on Government to make good on manifesto pledge for the upgrading of 5 million homes.
A tour through Robotic Installation Systems for Elevators, Innovation Labs, MetaCore and PORT tech.
A dynamic brand built for impact stitched into BSRIA’s building fabric.
BS 9991:2024 and the recently published CLC advisory note
Fire safety in the design, management and use of residential buildings. Code of practice.
Comments
Brilliant article. We made a document that really simply covers what Ventilation refurbishment actually is and why it can be beneficial as opposed to a replacement. Don't feel any pressure, but have a look if you want a really simple updated definition. Click here
https://www.bvs-ltd.co.uk/2023/06/07/refurbish-or-replace-making-the-right-choice-for-your-ahu-unit/