Heat recovery ventilation
Ventilation is necessary in buildings to remove ‘stale’ internal air and replace it with ‘fresh’ outside air. This helps to:
- Moderate internal temperatures.
- Reduce the accumulation of moisture, odours and other gases that can build up during occupied periods.
- Create air movement which improves the comfort of occupants.
Very broadly, ventilation can be ‘natural’ or ‘mechanical’.
- Mechanical (or ‘forced’) ventilation tends to be driven by fans.
- Natural ventilation is driven by ‘natural’ pressure differences from one part of the building to another.
Ventilation systems may also include heating, cooling, filtration and humidity control.
Ventilation has become increasingly important because of the tendency to ‘seal’ modern buildings. However the process of extracting internal air, which may have been conditioned, and replacing it with air that has not is inherently wasteful.
This can be mitigated by heat recovery, the process of collecting and re-using heat that would otherwise be lost, which can help to reduce energy consumption, reducing running costs and carbon emissions.
Heat recovery ventilation (HRV or ventilation heat recovery (VHR) or mechanical ventilation heat recovery (MVHR)) uses a heat exchanger to recover heat from extract air, that would otherwise be rejected to the outside, and uses this heat to pre-heat the ‘fresh’ supply air. Very efficient heat exchangers can recover as much as 98% of the ‘waste’ heat.
Typically heat recovery ventilation works by transferring heat between the incoming and outgoing air streams by blowing them in opposite directions between adjacent flat plates in air-to-air heat exchangers. Heat is absorbed by the plates from the 'hot' air on one side and released to the 'cold' air on the other. Cellular heat exchangers, which can achieve greater efficiency, drive the incoming and outgoing heat through adjacent square tubes, increasing the heat transfer surface area.
Air to ground and air to water heat exchangers use the earth or water as a heat exchange body by blowing air through tubes surrounded by earth or water.
Heat can also be recovered from other processes and components, such as refrigeration units and chiller units, boilers, power generation plant, plant cooling systems, hot liquid effluents and high-temperature exhaust gasses. Recovered heat can also be used for drying processes, power generation, pre-heating combustion air for furnaces or boilers and so on.
Heat recovery is also possible with heat pumps, which essentially reverse the refrigeration cycle of chiller units to provide heating, rather than cooling.
It is also possible, although relatively complicated to include heat recovery in natural ventilation systems.
[edit] Related articles on Designing Buildings Wiki.
- Air conditioning.
- Air handling unit.
- Chiller unit.
- District energy.
- Geothermal pile foundations.
- Heat pump.
- Heat recovery.
- HVAC.
- Mechanical ventilation.
- Thermal labyrinths.
- Variable refrigerant flow.
[edit] External references
- Heat recovery: A guide to key systems and applications.
- Carbon Trust, How to implement heat recovery in heating, air conditioning and ventilation systems.
- The Future of Heating: Meeting the Challenge.
- The potential for recovering and using surplus heat from industry.
- Harvesting energy: body heat to warm buildings
Featured articles and news
A must-attend event for the architecture industry.
Caroline Gumble to step down as CIOB CEO in 2025
After transformative tenure take on a leadership role within the engineering sector.
RIDDOR and the provisional statistics for 2023 / 2024
Work related deaths; over 50 percent from constructuon and 50 percent recorded as fall from height.
Solar PV company fined for health and safety failure
Work at height not properly planned and failure to take suitable steps to prevent a fall.
The term value when assessing the viability of developments
Consultation on the compulsory purchase process, compensation reforms and potential removal of hope value.
Trees are part of the history of how places have developed.
The increasing costs of repair and remediation
Highlighted by regulator of social housing, as acceleration plan continues.
Free topic guide on mould in buildings
The new TG 26/2024 published by BSRIA.
Greater control for LAs over private rental selective licensing
A brief explanation of changes with the NRLA response.
Practice costs for architectural technologists
Salary standards and working out what you’re worth.
The Health and Safety Executive at 50
And over 200 years of Operational Safety and Health.
Thermal imaging surveys a brief intro
Thermal Imaging of Buildings; a pocket guide BG 72/2017.
Internally insulating a historical building
An experimental DIY approach using mineral thermal lime plaster.
Tree species selection for green infrastructure: A guide for specifiers.
The future of the Grenfell Tower site
Principles, promises, recommendations and a decision expected in February 2025.