Torsion Springs and Their Benefits
Contents |
Introduction
Torsion springs are widely used in many different industries, from construction and rail to architecture and aerospace. Their helical design allows them to exert rotary force and is ideal for when there is a need for angular movement with the legs of the spring attached to other components.
What are Torsion Springs?
These springs can store and release angular energy or just hold a mechanism in place. They are made to provide or maintain a rotational pressure between two surfaces by allowing components to rotate around the centre of the spring, which attempts to push them back to their original position. In a general manner, torsion springs should be created to spring in the opposite direction as the coil, as they will not be able to withstand heavier weights if otherwise.
However, because there are so many different designs, they are capable of meeting many different requirements and fit a wealth of applications.
Materials Used for Torsion Springs
A lot of materials have the ability to bend without breaking, while others do not. It is crucial that the materials chosen for springs, including for torsion springs, can flex without breaking. Some of the most common materials for springs include (but are not limited to):
- High carbon steels – the most common materials for springs. They might need extra corrosive protection like pre-galvanised coating.
- Stainless steels – perhaps the most important alloy steel for springs, stainless steel has a high degree of corrosion and heat resistance.
- Alloy steels – common alloy steels include chrome vanadium and chrome silicon. They’re suitable for shock loads, such as engine valve springs.
- Non-ferrous alloys – these alloys are best suited for applications that require good electrical conductivity.
- High-temperature alloys – metals like cold drawn nickel and chromium alloys are suitable for applications that need good corrosion resistance at elevated temperatures.
Applications of Torsion Springs
Torsion springs can be used in a wide variety of circumstances, objects and mechanisms. They are common in everyday objects as well. Amongst some of their most popular applications are clothespins, door hinges, paper cutters, vehicle suspensions, watches, clipboards, mousetraps, switches, and much more.
Advantages of Torsion Springs
Torsion springs provide many benefits to the objects and mechanisms they are used in, which adds to their popularity. Key benefits of these springs include:
- Durable – they last for a long time and provide good value for money
- Easy to use – for example, torsion springs can be adjusted easily in vehicles
- Small – the relatively small size of torsion springs allows them to fit many applications, even with limited space
Find Out More
Related articles on Designing Buildings Wiki
- Compression springs.
- Flat springs.
- Key Qualities of Springs.
- The Importance of Gas Springs.
- Large and Hot Coiled Compression Springs
- Springs in Structures
- The Multiple Uses of Compression Springs
- The Properties of Die Springs
- Tension springs v torsion springs
- The Difference Between Tension and Torsion Springs
- Torsion.
- Types of spring.
Featured articles and news
HSE simplified advice for installers of stone worktops
After company fined for repeatedly failing to protect workers.
Co-located with 10th year of UK Construction Week.
How orchards can influence planning and development.
Time for knapping, no time for napping
Decorative split stone square patterns in facades.
A practical guide to the use of flint in design and architecture.
Designing for neurodiversity: driving change for the better
Accessible inclusive design translated into reality.
RIBA detailed response to Grenfell Inquiry Phase 2 report
Briefing notes following its initial 4 September response.
Approved Document B: Fire Safety from March
Current and future changes with historical documentation.
A New Year, a new look for BSRIA
As phase 1 of the BSRIA Living Laboratory is completed.
A must-attend event for the architecture industry.
Caroline Gumble to step down as CIOB CEO in 2025
After transformative tenure take on a leadership role within the engineering sector.
RIDDOR and the provisional statistics for 2023 / 2024
Work related deaths; over 50 percent from construction and 50 percent recorded as fall from height.
Solar PV company fined for health and safety failure
Work at height not properly planned and failure to take suitable steps to prevent a fall.
The term value when assessing the viability of developments
Consultation on the compulsory purchase process, compensation reforms and potential removal of hope value.
Trees are part of the history of how places have developed.