The Science of Lifts
Contents[hide] |
[edit] How do Lifts Work?
A lift uses physical mechanisms that work together to lift or lower a car to various floors. The key components of a lift system include one or more car, a counterweight, an electric motor, metal cables, and various security systems.
Each part plays a particularly important part in the role of a lift system, and there are a lot of physical principles that are considered to ensure the lift stays functional and as safe as possible.
[edit] Conservation of Energy
This principle is one of the most widely known physical laws that is used. The law states that the total energy of a system that doesn’t interact with its surroundings remains constant. It is also referred to in the following statement:
“Energy is neither created nor destroyed; it transforms from one form to another.”
This would be, for example, converting electrical energy to kinetic energy within a motor. This law is particularly important in lift design, as it helps with the understanding of the raising and lowering of a lift car. Lift cars possess gravitational potential energy (GPE), which is the energy that an object possesses depending on how far the object is from Earth.
A lift that is high up has a greater GPE than if it was lower. Gaining this GPE must come from somewhere, and it comes from mechanical or electrical energy from the motor. To lift a car, more force needs to be applied than the car’s mass times by Earth’s acceleration due to gravity.
For example, lifting a 1,000kg car would require approximately 10,000N to lift using a single pulley, which is an immense amount of force.
[edit] The Physics of Counterweights
Counterweights provide a way to make life a lot easier when lifting a car to higher floors. Traditionally, counterweights weigh the same as when a lift is at half capacity. For example, if a car weighed 1,000kg and has a capacity of 1,000kg, the counterweight would weigh 1,500kg.
Because of this extra weight, it means that less force and, therefore, energy is needed to lift the car. For example, if the lift car is 3,000kg and the counterweight is 2,000kg, then 1,000kg is needed to be lifted as opposed to 3,000kg – an energy reduction of 66.7%.
Because of how they are implemented, it also means that the counterweight increases the acceleration that is required to raise the lift and decreases the acceleration that is required to lower the car, all of which helps to lower the amount of energy that is required by the motor.
As well as this, counterweights help to reduce the amount of energy that is used by the motor, which is beneficial in terms of increasing the environmental friendliness of lift systems. The goal is to ensure that the least amount of energy is used, whilst also maintaining the most efficient service possible.
[edit] Related articles on Designing Buildings
- A brief history of lifts over the years.
- Building engineering physics.
- Considerations When Installing a Residential Lift.
- Home lifts.
- Lifting platform.
- Lift motor room.
- Lift Standards: EN 81-20 and EN 81-50.
- Lifts and Escalators: A Quality Perspective.
- Lifts and Their Special Operating Modes.
- Lifts for buildings.
- Lifts for office buildings.
- Pulley.
- Smart elevators.
- The hidden mechanics of lift routing.
- The importance of service lifts.
- The world's fastest lifts.
--Nathan Massey 14:38, 11 Jul 2017 (BST)
Featured articles and news
Spring Statement 2025 with reactions from industry
Confirming previously announced funding, and welfare changes amid adjusted growth forecast.
Scottish Government responds to Grenfell report
As fund for unsafe cladding assessments is launched.
CLC and BSR process map for HRB approvals
One of the initial outputs of their weekly BSR meetings.
Architects Academy at an insulation manufacturing facility
Programme of technical engagement for aspiring designers.
Building Safety Levy technical consultation response
Details of the planned levy now due in 2026.
Great British Energy install solar on school and NHS sites
200 schools and 200 NHS sites to get solar systems, as first project of the newly formed government initiative.
600 million for 60,000 more skilled construction workers
Announced by Treasury ahead of the Spring Statement.
The restoration of the novelist’s birthplace in Eastwood.
Life Critical Fire Safety External Wall System LCFS EWS
Breaking down what is meant by this now often used term.
PAC report on the Remediation of Dangerous Cladding
Recommendations on workforce, transparency, support, insurance, funding, fraud and mismanagement.
New towns, expanded settlements and housing delivery
Modular inquiry asks if new towns and expanded settlements are an effective means of delivering housing.
Building Engineering Business Survey Q1 2025
Survey shows growth remains flat as skill shortages and volatile pricing persist.
Construction contract awards remain buoyant
Infrastructure up but residential struggles.
Warm Homes Plan and existing energy bill support policies
Breaking down what existing policies are and what they do.
A dynamic brand built for impact stitched into BSRIA’s building fabric.
Comments
It did not help me at all shouldn't have wasted my time on ya.
Sorry to hear, have you checked out the related articles section.