Seasonal thermal energy storage
Inter-seasonal thermal energy storage also called seasonal thermal energy storage (STES) works in a very similar way to ground source heat pumps in that heat or coolth is store in, effectively, a battery with the main difference being that rather than extracting the existing heat or coolth from the ground via the coupling effect, it actively stores heat in the ground for use many months later.
Most inter-seasonal systems are heating systems that use solar collection to increase the amount of heat energy collected during warmer summer months. The solar collection systems can be relatively simple with a network of pipes laid close to the surface beneath a dark heavy finish, such as black tarmac. As such they can be laid beneath road systems, car parks or playgrounds. Similar to ground source heat pumps, a second system of pipework is installed deeper into the ground, or potentially beneath a buildings foundations.
At a depth of around 7 metres the earth's temperature tends to remain at a natural constant 10 degrees, which is the temperature standard ground source heat pumps run at, in these seasonal systems the extra heat within the solar collectors beneath the surface is pumped down to the deeper levels to achieve a constant temperature of around degrees. The ground loops are specifically designed to be able to take these increased levels of heat and store this over longer periods of time. In the colder winter months when outside temperatures are lower, the heat from the deep pipe systems is extracted via a heat pump and can be used to heat buildings during the colder months.
[edit] Related articles on Designing Buildings
- Coefficient of Performance CoP.
- Dynamic thermal modelling of closed loop geothermal heat pump systems.
- Earth berm.
- Earth bermed buildings.
- Earth to air heat exchangers.
- Energy storage.
- Energy storage for buildings.
- Energy storage - the missing piece?
- Energy targets.
- Environmental policy.
- Emission rates.
- Geothermal pile foundations.
- Geothermal energy.
- Ground coupling effect.
- Ground energy options.
- Ground energy options
- Ground source heat pumps.
- Ground preconditioning of supply air.
- Large scale solar thermal energy.
- Renewable energy sources: how they work and what they deliver: Part 3: Electrically driven heat pumps DG 532 3.
- Thermal labyrinths.
- Sustainability.
- Solar photovoltaics.
- Solar thermal energy.
- The future of UK power generation.
- Thermal labyrinths.
- Wind Energy in the United Kingdom.
[edit] External Links
Featured articles and news
Reasons for using MVHR systems
6 reasons for a whole-house approach to ventilation.
Supplementary Planning Documents, a reminder
As used by the City of London to introduce a Retrofit first policy.
The what, how, why and when of deposit return schemes
Circular economy steps for plastic bottles and cans in England and Northern Ireland draws.
Join forces and share Building Safety knowledge in 2025
Why and how to contribute to the Building Safety Wiki.
Reporting on Payment Practices and Performance Regs
Approved amendment coming into effect 1 March 2025.
A new CIOB TIS on discharging CDM 2015 duties
Practical steps that can be undertaken in the Management of Contractors to discharge the relevant CDM 2015 duties.
Planning for homes by transport hubs
Next steps for infrastructure following the updated NPPF.
Access, history and Ty unnos.
The world’s first publicly funded civic park.
Exploring permitted development rights for change of use
Discussing lesser known classes M, N, P, PA and L.
CIOB Art of Building 2024 judges choice winner
Once Upon a Pass by Liam Man.
CIOB Art of Building 2024 public choice winner
Fresco School by Roman Robroek.
HE expands finance alliance to boost SME house building
Project follows on from Habiko public-private place making pension partnership for affordable housing delivery.
Licensing construction; looking back to look forward
Voluntary to required contractors (licensing) schemes.
A contractor discusses the Building Safety Act
A brief to the point look at changes that have occurred.
How orchards can influence planning and development.