Monte Carlo simulation
[edit] Introduction
A Monte Carlo simulation is a computational risk analysis tool applied to situations that are uncertain or variable. It is a mathematical way of predicting the outcomes of a situation or set of circumstances by giving a range of possible outcomes and assessing the risk impact of each. It is also referred to as the ‘Monte Carlo method’ or ‘probability simulation’ and is used in many diverse applications such as construction, engineering, finance, project management, insurance, research, transportation and so on.
The name is thought to have been devised by scientists working on the atom bomb in reference to the principality of Monaco – well known for its casinos.
A key characteristic of a Monte Carlo simulation is that it provides a more realistic picture of likely future outcomes by generating a range of possible values, not just a single estimate. In construction, it can be used to predict how long a particular task will take and its likely effect on the programme schedule.
[edit] Mathematical modelling
To begin with, a mathematical model is created using a range of estimates for a particular task. So, for example, a project manager may consider the time it may take to complete a set of tasks by:
- Considering worst case scenarios (ie the maximum expected time values for all variables),
- Considering best-case scenarios (ie the minimum expected time values for all variables).
- Considering the most likely result.
So, for a particular set of tasks on a construction project, the project manager may estimate the following:
Task | Best case (minimum) | Most likely | Worst case (maximum) |
Task 1 | 2 weeks | 4 weeks | 7 weeks |
Task 2 | 3 weeks | 6 weeks | 9 weeks |
Task 3 | 8 weeks | 13 weeks | 18 weeks |
Total | 13 weeks | 23 weeks | 34 weeks |
From the table above, it can be seen that the range of outcomes for completing the three tasks ranges from 13 to 34 weeks.
These estimates are inputted into the Monte Carlo simulation which may be run 500 times. The likelihood of a particular result can be tested by counting how many times it was returned in the simulation and a percentage created.
So, it may be that the after 500 simulations, the most likely estimate of 23 weeks completion was only returned 20% of the time (a probability of only 1 in 5). Whereas, completion in 30 weeks was returned 80% of the time (4 in 5), which may be a more realistic basis for the project manager’s decision making.
Note: the extremes may be discounted. It should also be noted that the method is only as good as the original estimates used to create the model. Also, the values outputted are only probabilities but they may give planners a better idea of predicting an uncertain future.
Palisade @RISK for Excel from Palisade Corporation is just one of the available software programmes able to undertake Monte Carlo simulations.
NB The Green Book, Central Government Guidance On Appraisal And Evaluation, Published by HM Treasury in 2018, suggests that: ‘Monte Carlo Analysis is a simulation-based risk modelling technique that produces expected values and confidence intervals as a result of many simulations that model the collective impact of a number of uncertainties.’
[edit] Related articles on Designing Buildings Wiki
- Code of practice for project management.
- Code of practice for programme management.
- Construction project.
- Construction project manager - morning tasks.
- Contingency theory.
- Game theory.
- Microsoft's six ways to supercharge project management.
- Multi criteria decision analysis.
- Project manager.
- Project execution plan.
- Project manager's report.
- Project monitoring.
- Risk management.
Featured articles and news
Local leaders gain new powers to support local high streets
High Street Rental Auctions to be introduced from December.
Infrastructure sector posts second gain for October
With a boost for housebuilder and commercial developer contract awards.
Sustainable construction design teams survey
Shaping the Future of Sustainable Design: Your Voice Matters.
COP29; impacts of construction and updates
Amid criticism, open letters and calls for reform.
The properties of conservation rooflights
Things to consider when choosing the right product.
Adapting to meet changing needs.
London Build: A festival of construction
Co-located with the London Build Fire & Security Expo.
Tasked with locating groups of 10,000 homes with opportunity.
Delivering radical reform in the UK energy market
What are the benefits, barriers and underlying principles.
Information Management Initiative IMI
Building sector-transforming capabilities in emerging technologies.
Recent study of UK households reveals chilling home truths
Poor insulation, EPC knowledge and lack of understanding as to what retrofit might offer.
Embodied Carbon in the Built Environment
Overview, regulations, detail calculations and much more.
Why the construction sector must embrace workplace mental health support
Let’s talk; more importantly now, than ever.
Ensuring the trustworthiness of AI systems
A key growth area, including impacts for construction.
Foundations for the Future: A new model for social housing
To create a social housing pipeline, that reduces the need for continuous government funding.
Mutual Investment Models or MIMs
PPP or PFI, enhanced for public interest by the Welsh Government.
Key points and relevance to construction of meeting, due to reconvene.
Comments
In undertaking a Monte Carlo risk analysis it should be noted that the variables to which the probabilities are assigned should be independent of each other. As an example the price of reinforced concrete and the price of steel are not necessarily independent of each other.