Monte Carlo simulation
![]() |
[edit] Introduction
A Monte Carlo simulation is a computational risk analysis tool applied to situations that are uncertain or variable. It is a mathematical way of predicting the outcomes of a situation or set of circumstances by giving a range of possible outcomes and assessing the risk impact of each. It is also referred to as the ‘Monte Carlo method’ or ‘probability simulation’ and is used in many diverse applications such as construction, engineering, finance, project management, insurance, research, transportation and so on.
The name is thought to have been devised by scientists working on the atom bomb in reference to the principality of Monaco – well known for its casinos.
A key characteristic of a Monte Carlo simulation is that it provides a more realistic picture of likely future outcomes by generating a range of possible values, not just a single estimate. In construction, it can be used to predict how long a particular task will take and its likely effect on the programme schedule.
[edit] Mathematical modelling
To begin with, a mathematical model is created using a range of estimates for a particular task. So, for example, a project manager may consider the time it may take to complete a set of tasks by:
- Considering worst case scenarios (ie the maximum expected time values for all variables),
- Considering best-case scenarios (ie the minimum expected time values for all variables).
- Considering the most likely result.
So, for a particular set of tasks on a construction project, the project manager may estimate the following:
Task | Best case (minimum) | Most likely | Worst case (maximum) |
Task 1 | 2 weeks | 4 weeks | 7 weeks |
Task 2 | 3 weeks | 6 weeks | 9 weeks |
Task 3 | 8 weeks | 13 weeks | 18 weeks |
Total | 13 weeks | 23 weeks | 34 weeks |
From the table above, it can be seen that the range of outcomes for completing the three tasks ranges from 13 to 34 weeks.
These estimates are inputted into the Monte Carlo simulation which may be run 500 times. The likelihood of a particular result can be tested by counting how many times it was returned in the simulation and a percentage created.
So, it may be that the after 500 simulations, the most likely estimate of 23 weeks completion was only returned 20% of the time (a probability of only 1 in 5). Whereas, completion in 30 weeks was returned 80% of the time (4 in 5), which may be a more realistic basis for the project manager’s decision making.
Note: the extremes may be discounted. It should also be noted that the method is only as good as the original estimates used to create the model. Also, the values outputted are only probabilities but they may give planners a better idea of predicting an uncertain future.
Palisade @RISK for Excel from Palisade Corporation is just one of the available software programmes able to undertake Monte Carlo simulations.
NB The Green Book, Central Government Guidance On Appraisal And Evaluation, Published by HM Treasury in 2018, suggests that: ‘Monte Carlo Analysis is a simulation-based risk modelling technique that produces expected values and confidence intervals as a result of many simulations that model the collective impact of a number of uncertainties.’
[edit] Related articles on Designing Buildings Wiki
- Code of practice for project management.
- Code of practice for programme management.
- Construction project.
- Construction project manager - morning tasks.
- Contingency theory.
- Game theory.
- Microsoft's six ways to supercharge project management.
- Multi criteria decision analysis.
- Project manager.
- Project execution plan.
- Project manager's report.
- Project monitoring.
- Risk management.
Featured articles and news
BSRIA Statutory Compliance Inspection Checklist
BG80/2025 now significantly updated to include requirements related to important changes in legislation.
Shortlist for the 2025 Roofscape Design Awards
Talent and innovation showcase announcement from the trussed rafter industry.
OpenUSD possibilities: Look before you leap
Being ready for the OpenUSD solutions set to transform architecture and design.
Global Asbestos Awareness Week 2025
Highlighting the continuing threat to trades persons.
Retrofit of Buildings, a CIOB Technical Publication
Now available in Arabic and Chinese aswell as English.
The context, schemes, standards, roles and relevance of the Building Safety Act.
Retrofit 25 – What's Stopping Us?
Exhibition Opens at The Building Centre.
Types of work to existing buildings
A simple circular economy wiki breakdown with further links.
A threat to the creativity that makes London special.
How can digital twins boost profitability within construction?
The smart construction dashboard, as-built data and site changes forming an accurate digital twin.
Unlocking surplus public defence land and more to speed up the delivery of housing.
The Planning and Infrastructure Bill
An outline of the bill with a mix of reactions on potential impacts from IHBC, CIEEM, CIC, ACE and EIC.
Farnborough College Unveils its Half-house for Sustainable Construction Training.
Spring Statement 2025 with reactions from industry
Confirming previously announced funding, and welfare changes amid adjusted growth forecast.
Scottish Government responds to Grenfell report
As fund for unsafe cladding assessments is launched.
CLC and BSR process map for HRB approvals
One of the initial outputs of their weekly BSR meetings.
Building Safety Levy technical consultation response
Details of the planned levy now due in 2026.
Great British Energy install solar on school and NHS sites
200 schools and 200 NHS sites to get solar systems, as first project of the newly formed government initiative.
600 million for 60,000 more skilled construction workers
Announced by Treasury ahead of the Spring Statement.
Comments
In undertaking a Monte Carlo risk analysis it should be noted that the variables to which the probabilities are assigned should be independent of each other. As an example the price of reinforced concrete and the price of steel are not necessarily independent of each other.