Contingency theory in construction
Contingency theory is an organisational theory based around the idea that the role of a project manager is to establish the best possible fit between the organisation, its environment and sub-systems.
It is founded on the belief that many management theories may be appropriate in a particular situation, but no single approach will work successfully in all circumstances. Instead, internal and external situations will determine the optimal course of action. This makes it particularly appropriate for construction, which, with its typically uncertain and non-routine site environment, will typically benefit from a management model that is more adaptive and flexible.
Contingency theory encompasses the idea of open systems, i.e. systems that have external interactions - such as construction. Open systems are capable of reaching the same objective from different initial conditions and by following different paths (organisational structures). This is known as the equifinality of open systems.
Project managers must ‘satisfice’ (a combination of the words 'satisfy' and 'suffice'), that is, they must find a solution which is sufficient to satisfy the specific project criteria – in order to identify a route which optimises the performance of the system and sub-systems.
However, the complex nature of construction projects necessitates a careful and considered approach, keeping in mind the possible implications of changing the management system.
[edit] Related articles on Designing Buildings Wiki
Featured articles and news
CLC and BSR process map for HRB approvals
One of the initial outputs of their weekly BSR meetings.
Building Safety Levy technical consultation response
Details of the planned levy now due in 2026.
Great British Energy install solar on school and NHS sites
200 schools and 200 NHS sites to get solar systems, as first project of the newly formed government initiative.
600 million for 60,000 more skilled construction workers
Announced by Treasury ahead of the Spring Statement.
The restoration of the novelist’s birthplace in Eastwood.
Life Critical Fire Safety External Wall System LCFS EWS
Breaking down what is meant by this now often used term.
PAC report on the Remediation of Dangerous Cladding
Recommendations on workforce, transparency, support, insurance, funding, fraud and mismanagement.
New towns, expanded settlements and housing delivery
Modular inquiry asks if new towns and expanded settlements are an effective means of delivering housing.
Building Engineering Business Survey Q1 2025
Survey shows growth remains flat as skill shortages and volatile pricing persist.
Construction contract awards remain buoyant
Infrastructure up but residential struggles.
Home builders call for suspension of Building Safety Levy
HBF with over 100 home builders write to the Chancellor.
CIOB Apprentice of the Year 2024/2025
CIOB names James Monk a quantity surveyor from Cambridge as the winner.
Warm Homes Plan and existing energy bill support policies
Breaking down what existing policies are and what they do.
Treasury responds to sector submission on Warm Homes
Trade associations call on Government to make good on manifesto pledge for the upgrading of 5 million homes.
A tour through Robotic Installation Systems for Elevators, Innovation Labs, MetaCore and PORT tech.
A dynamic brand built for impact stitched into BSRIA’s building fabric.
BS 9991:2024 and the recently published CLC advisory note
Fire safety in the design, management and use of residential buildings. Code of practice.
Comments
Contingency theory, also known as the contingency approach, is a management theory that is applicable to various industries, including construction. In the context of construction, contingency theory suggests that there is no one-size-fits-all approach to managing projects. Instead, the most effective management style and strategies depend on various factors or contingencies.
Here's how contingency theory is relevant in construction:
1. **Project Complexity:** The complexity of a construction project is a key contingency factor. More complex projects may require a more adaptive and flexible management approach, with an emphasis on collaboration, communication, and problem-solving among team members.
2. **Project Size and Scope:** The size and scope of a construction project can impact the management approach. Large-scale projects may necessitate a more structured and formal management style, while smaller projects may be more manageable with a less formal approach.
3. **Technology and Innovation:** The level of technology and innovation used in construction can influence project management. Projects utilizing advanced technology may require specialized training and coordination, affecting how the project is managed.
4. **Project Stakeholders:** The number and diversity of stakeholders involved in a construction project can influence the management approach. Effective communication and stakeholder engagement become vital in addressing their unique needs and concerns.
5. **Regulatory and Legal Environment:** The regulatory and legal environment in which a construction project takes place can shape the management decisions and strategies. Compliance with building codes, safety regulations, and environmental laws may dictate specific management actions.
6. **Resource Availability:** The availability of resources, including financial, human, and material resources, can impact project management decisions. Managing resource constraints effectively is crucial in completing projects on time and within budget.
7. **Project Risk Profile:** The level of uncertainty and risk associated with a construction project can influence management decisions and the need for contingency plans. Projects with higher risk profiles may require a more adaptive and proactive management approach.
8. **Project Objectives:** The specific objectives of a construction project, such as time, cost, quality, and sustainability goals, can affect management strategies. Balancing these objectives may require different management approaches.
In summary, contingency theory recognizes that the management of construction projects must be tailored to suit the unique circumstances and contingencies of each project. Flexibility, adaptability, and the ability to adjust management strategies based on changing circumstances are essential in effectively navigating the complexities of construction projects. Project managers and construction teams must carefully assess the various contingencies and make informed decisions to ensure successful project outcomes.