Contingency theory in construction
Contingency theory is an organisational theory based around the idea that the role of a project manager is to establish the best possible fit between the organisation, its environment and sub-systems.
It is founded on the belief that many management theories may be appropriate in a particular situation, but no single approach will work successfully in all circumstances. Instead, internal and external situations will determine the optimal course of action. This makes it particularly appropriate for construction, which, with its typically uncertain and non-routine site environment, will typically benefit from a management model that is more adaptive and flexible.
Contingency theory encompasses the idea of open systems, i.e. systems that have external interactions - such as construction. Open systems are capable of reaching the same objective from different initial conditions and by following different paths (organisational structures). This is known as the equifinality of open systems.
Project managers must ‘satisfice’ (a combination of the words 'satisfy' and 'suffice'), that is, they must find a solution which is sufficient to satisfy the specific project criteria – in order to identify a route which optimises the performance of the system and sub-systems.
However, the complex nature of construction projects necessitates a careful and considered approach, keeping in mind the possible implications of changing the management system.
[edit] Related articles on Designing Buildings Wiki
Featured articles and news
HSE simplified advice for installers of stone worktops
After company fined for repeatedly failing to protect workers.
Co-located with 10th year of UK Construction Week.
How orchards can influence planning and development.
Time for knapping, no time for napping
Decorative split stone square patterns in facades.
A practical guide to the use of flint in design and architecture.
Designing for neurodiversity: driving change for the better
Accessible inclusive design translated into reality.
RIBA detailed response to Grenfell Inquiry Phase 2 report
Briefing notes following its initial 4 September response.
Approved Document B: Fire Safety from March
Current and future changes with historical documentation.
A New Year, a new look for BSRIA
As phase 1 of the BSRIA Living Laboratory is completed.
A must-attend event for the architecture industry.
Caroline Gumble to step down as CIOB CEO in 2025
After transformative tenure take on a leadership role within the engineering sector.
RIDDOR and the provisional statistics for 2023 / 2024
Work related deaths; over 50 percent from construction and 50 percent recorded as fall from height.
Solar PV company fined for health and safety failure
Work at height not properly planned and failure to take suitable steps to prevent a fall.
The term value when assessing the viability of developments
Consultation on the compulsory purchase process, compensation reforms and potential removal of hope value.
Trees are part of the history of how places have developed.
Comments
Contingency theory, also known as the contingency approach, is a management theory that is applicable to various industries, including construction. In the context of construction, contingency theory suggests that there is no one-size-fits-all approach to managing projects. Instead, the most effective management style and strategies depend on various factors or contingencies.
Here's how contingency theory is relevant in construction:
1. **Project Complexity:** The complexity of a construction project is a key contingency factor. More complex projects may require a more adaptive and flexible management approach, with an emphasis on collaboration, communication, and problem-solving among team members.
2. **Project Size and Scope:** The size and scope of a construction project can impact the management approach. Large-scale projects may necessitate a more structured and formal management style, while smaller projects may be more manageable with a less formal approach.
3. **Technology and Innovation:** The level of technology and innovation used in construction can influence project management. Projects utilizing advanced technology may require specialized training and coordination, affecting how the project is managed.
4. **Project Stakeholders:** The number and diversity of stakeholders involved in a construction project can influence the management approach. Effective communication and stakeholder engagement become vital in addressing their unique needs and concerns.
5. **Regulatory and Legal Environment:** The regulatory and legal environment in which a construction project takes place can shape the management decisions and strategies. Compliance with building codes, safety regulations, and environmental laws may dictate specific management actions.
6. **Resource Availability:** The availability of resources, including financial, human, and material resources, can impact project management decisions. Managing resource constraints effectively is crucial in completing projects on time and within budget.
7. **Project Risk Profile:** The level of uncertainty and risk associated with a construction project can influence management decisions and the need for contingency plans. Projects with higher risk profiles may require a more adaptive and proactive management approach.
8. **Project Objectives:** The specific objectives of a construction project, such as time, cost, quality, and sustainability goals, can affect management strategies. Balancing these objectives may require different management approaches.
In summary, contingency theory recognizes that the management of construction projects must be tailored to suit the unique circumstances and contingencies of each project. Flexibility, adaptability, and the ability to adjust management strategies based on changing circumstances are essential in effectively navigating the complexities of construction projects. Project managers and construction teams must carefully assess the various contingencies and make informed decisions to ensure successful project outcomes.