Fuel cell
Fuel cells are electrochemical energy conversion devices that process oxygen and hydrogen to produce electricity, heat and water. They operate much like a battery, but rather than running down and requiring re-charging or replacement, they can be refuelled.
Fuel cells generate electrical power quietly and efficiently and are virtually pollution-free at the point of use. The by-products from a fuel cell system are water and heat. Whilst more traditional combustion technologies typically have an efficiency of around 35%, fuel cells can achieve double this, extracting more energy from the same amount of fuel.
However, fuel cells are not necessarily ‘clean’ in relation to the fuel source they use. The hydrogen fuel itself has to be produced, usually from hydrocarbons such as natural gas or alternatively by being electrolysed from water. This use of natural gas, is not sustainable and does generate emissions. In addition, the hydrogen fuel must be transported, and stored.
Fuel cells are composed of two electrodes. The anode is a negative electrode that provides electrons and the cathode is a positive electrode that accepts electrons. An electrolyte is found in the middle of a fuel cell. The reaction in the fuel cell is typically as follows:
- Hydrogen atoms enter the fuel cell at the anode where a chemical reaction strips them of their electrons.
- A catalyst layer on the anode helps to separate the hydrogen atoms into electrons and protons.
- The hydrogen atoms then become ionised and carry positive electrical charge.
- Negatively charged electrons provide the current.
- Protons pass through the electrolyte to the cathode side.
- Oxygen enters the fuel cell at the cathode.
- Oxygen combines with electrons from the circuit and hydrogen ions that have travelled through the anode and electrolyte.
- The electrolyte only allows the required ions to pass between the anode and cathode.
- Another catalyst layer in the cathode helps to combine hydrogen, oxygen, protons and electrons to form water and heat.
- The water drains from the cell.
Individual fuel cells can be combined into a stacked fuel cell to increase electrical output. A fuel cell system is made up of a number of components that may include:
- Fuel delivery module (from a hydrogen storage tank or a fuel processor).
- Fuel cell stack.
- Balance of plant.
- Power electronics module.
- Control system.
Fuel cells offer a number of advantages over other energy sources:
- A clean, reliable and high-yield energy source.
- Energy security and resiliency – the use of fuel cells can increase reliability of the grid by reducing demand at peak times.
- Energy responsibility and efficiency – they can reduce the level of on-site energy consumption to counter the effects of climate change and achieve energy efficiency targets.
- Combined heat and power – fuel cells can provide power and heat simultaneously which can be useful for some types of demand, and can significantly lower greenhouse gas emissions.
- Fuel cells can reach up to 90% CHP efficiency with low life-cycle costs. The power is distributed constantly. This system allows energy to be independent from the grid operation.
- Renewable energy such as solar photo voltaic systems can operate in tandem with fuel cell technology, giving the ability to manage energy usage and reduce emissions further.
The question of the ‘sustainability’ of fuel cells is a complex one, depending on an number of factors, such as:
- The alternative technology that would be adopted if fuel cells were not used.
- The end use for the fuel cell.
- The source of the hydrogen fuel.
- The method used for storing and transporting hydrogen.
- The efficiency of the cell.
- The ability to connect to the grid.
For more information on fuel cells see types of fuel cells.
NB The London Plan, Published by the Mayor of London in March 2016, suggests that a fuel cell is: ‘A cell that acts like a constantly recharging battery, electrochemically combining hydrogen and oxygen to generate power. For hydrogen fuel cells, water and heat are the only by-products and there is no direct air pollution or noise emissions. They are suitable for a range of applications, including vehicles and buildings.’
[edit] Related articles on Designing Buildings Wiki
- Battery storage.
- Carbon capture and storage.
- Combined heat and power.
- Electric vehicles.
- Electricity supply.
- Energy harvesting.
- Energy storage.
- Energy storage - the missing piece?
- Energy storage in buildings - a technology overview BG73 2018.
- Formula E drives electric vehicle market forward.
- Future of electricity in domestic buildings.
- Microgeneration.
- Micro-CHP.
- Pavegen.
- Planning now for hydrogen.
- Renewable energy.
- Types of fuel.
- Types of fuel cells.
Featured articles and news
50th Golden anniversary ECA Edmundson apprentice award
Showcasing the very best electrotechnical and engineering services for half a century.
Welsh government consults on HRBs and reg changes
Seeking feedback on a new regulatory regime and a broad range of issues.
CIOB Client Guide (2nd edition) March 2025
Free download covering statutory dutyholder roles under the Building Safety Act and much more.
AI and automation in 3D modelling and spatial design
Can almost half of design development tasks be automated?
Minister quizzed, as responsibility transfers to MHCLG and BSR publishes new building control guidance.
UK environmental regulations reform 2025
Amid wider new approaches to ensure regulators and regulation support growth.
The maintenance challenge of tenements.
BSRIA Statutory Compliance Inspection Checklist
BG80/2025 now significantly updated to include requirements related to important changes in legislation.
Shortlist for the 2025 Roofscape Design Awards
Talent and innovation showcase announcement from the trussed rafter industry.
OpenUSD possibilities: Look before you leap
Being ready for the OpenUSD solutions set to transform architecture and design.
Global Asbestos Awareness Week 2025
Highlighting the continuing threat to trades persons.
Retrofit of Buildings, a CIOB Technical Publication
Now available in Arabic and Chinese aswell as English.
The context, schemes, standards, roles and relevance of the Building Safety Act.
Retrofit 25 – What's Stopping Us?
Exhibition Opens at The Building Centre.
Types of work to existing buildings
A simple circular economy wiki breakdown with further links.
A threat to the creativity that makes London special.
How can digital twins boost profitability within construction?
The smart construction dashboard, as-built data and site changes forming an accurate digital twin.