Freezing method for stabilising soils
Freezing can be used as a method of stabilising water-saturated soils and preventing collapse next to excavations. By freezing the soil until it becomes impervious, it enables workers and plant to operate safely inside the ‘ice wall’ that is formed. In this way, deep earthworks can take place.
In order to produce the low temperatures, steel freeze pipes are installed at approximately 1 m centres around the site that is to be excavated. The pipes are comprised of two tubes. The outer tube is 100-150 mm in diameter, is sealed at the bottom and connected at the top to a return pipe. The inner tube is 38-75 mm in diameter, is open at the bottom and connected to the flow pipe at the top.
These pipes carry chilled brine which is pumped down the inner tube. A refrigeration plant is used to cool the liquid, constantly re-circulating it through the pipes. The brine temperature ranges from -15 to -25-degrees, although the freezing medium must have a freezing point that is well below this temperature range, meaning that a solution of calcium chloride or magnesium chloride is often used.
For the method to be employed there must be moisture content of 8% of the voids. Using a brine medium, the time to obtain a wall of ice depends on the spacing of the pipes, the refrigeration quantity and the type of soil. For example, with pipes spaced at 1 m centres, a frozen wall measuring 1 m thick in sand and gravel takes 10-12 days, and 15-17 days in clay. An observation borehole in the centre of the treated area is sunk to determine whether the frozen wall is completely continuous and excavation work can begin.
Where rapid freezing is required, liquid nitrogen is used as the freezing medium, and this can reduce the freezing time to a few days.
[edit] Related articles on Designing Buildings Wiki
Featured articles and news
Designing for neurodiversity: driving change for the better
Accessible inclusive design translated into reality.
RIBA detailed response to Grenfell Inquiry Phase 2 report
Briefing notes following its initial 4 September response.
Approved Document B: Fire Safety from March
Current and future changes with historical documentation.
A New Year, a new look for BSRIA
As phase 1 of the BSRIA Living Laboratory is completed.
A must-attend event for the architecture industry.
Caroline Gumble to step down as CIOB CEO in 2025
After transformative tenure take on a leadership role within the engineering sector.
RIDDOR and the provisional statistics for 2023 / 2024
Work related deaths; over 50 percent from constructuon and 50 percent recorded as fall from height.
Solar PV company fined for health and safety failure
Work at height not properly planned and failure to take suitable steps to prevent a fall.
The term value when assessing the viability of developments
Consultation on the compulsory purchase process, compensation reforms and potential removal of hope value.
Trees are part of the history of how places have developed.
The increasing costs of repair and remediation
Highlighted by regulator of social housing, as acceleration plan continues.
Free topic guide on mould in buildings
The new TG 26/2024 published by BSRIA.
Greater control for LAs over private rental selective licensing
A brief explanation of changes with the NRLA response.
Practice costs for architectural technologists
Salary standards and working out what you’re worth.
The Health and Safety Executive at 50
And over 200 years of Operational Safety and Health.
Thermal imaging surveys a brief intro
Thermal Imaging of Buildings; a pocket guide BG 72/2017.