Cement mortar
Mortar is applied as a thick paste which sets hard as it cures. It creates a tight seal between bricks and blocks to prevent air and moisture entering into a construction. It can compensate for variations in brick or block size to produce an aesthetically-pleasing and structurally-sound construction. Generally, mortar is intentionally structurally weaker than the blocks or bricks it bonds, creating a sacrificial layer that is more easily repaired than defects would be in the bricks or blocks themselves.
Mortar is composed from a mixture of a fine aggregate (typically sand), a binder and water. The binder is generally either lime or cement. If lime is used, mortar is described as ‘lime mortar’ whereas if cement is used it is referred to as ‘cement mortar’ (a small amount of lime may also be also be used in cement mortars). For more information see: Types of mortar.
Lime mortar tends to bind masonry more ‘gently’ than cement mortar, as it is more flexible and gives earlier adhesion, but it gains strength more slowly. Where less flexible, dense mortars such as cement mortar are used to bind softer masonry, such as soft sandstones, they can cause local stresses leading to the deterioration of the masonry. For more information see: Lime mortar.
Cement mortar was invented by English cement manufacturer Joseph Aspdin in 1794 in order to create a cement that was stronger than lime mortar.
Water and cement set and harden through a chemical reaction known as 'hydration'. The process of hardening is described as 'curing', which requires particular conditions of temperature and humidity.
There are a number of different types of cement. Portland cement is the principal cement used in most masonry mortars. It is manufactured by heating together limestone (or chalk) and clay (or shale) in large rotary kilns. The chemistry of Portland cement largely consists of calcium silicate which reacts with water to form a strong, durable cement paste. For more information see: Cement and Portland cement.
The ratio of cement to sand is typically in the ration of 1:2 to 1:6 depending on what the mortar is being used for, with a higher proportion of sand producing a weaker mortar. Where lime is included, the ratio is express as; cement: lime: sand.
Generally, the sand and cement are first mixed until uniform, and then water is slowly added while mixing until the required consistency is achieved.
Soft sand (building sand) is generally used for bricklaying and pointing using thinner layers of mortar, whereas Sharp sand is used where a thicker layer of mortar is required.
Premixed mortars are available to which water is added.
A range of different colours can be achieved depending on the type of sand used, or by the addition of dyes. A number of admixtures can also be included to accelerate or retard drying, to make the mortar easier to work, to improve waterproofing, to increase cohesion and so on.
[edit] Related articles on Designing Buildings Wiki.
Featured articles and news
Twas the site before Christmas...
A rhyme for the industry and a thankyou to our supporters.
Plumbing and heating systems in schools
New apprentice pay rates coming into effect in the new year
Addressing the impact of recent national minimum wage changes.
EBSSA support for the new industry competence structure
The Engineering and Building Services Skills Authority, in working group 2.
Notes from BSRIA Sustainable Futures briefing
From carbon down to the all important customer: Redefining Retrofit for Net Zero Living.
Principal Designer: A New Opportunity for Architects
ACA launches a Principal Designer Register for architects.
A new government plan for housing and nature recovery
Exploring a new housing and infrastructure nature recovery framework.
Leveraging technology to enhance prospects for students
A case study on the significance of the Autodesk Revit certification.
Fundamental Review of Building Regulations Guidance
Announced during commons debate on the Grenfell Inquiry Phase 2 report.
CIAT responds to the updated National Planning Policy Framework
With key changes in the revised NPPF outlined.
Councils and communities highlighted for delivery of common-sense housing in planning overhaul
As government follows up with mandatory housing targets.
CIOB photographic competition final images revealed
Art of Building produces stunning images for another year.
HSE prosecutes company for putting workers at risk
Roofing company fined and its director sentenced.
Strategic restructure to transform industry competence
EBSSA becomes part of a new industry competence structure.
Major overhaul of planning committees proposed by government
Planning decisions set to be fast-tracked to tackle the housing crisis.
Industry Competence Steering Group restructure
ICSG transitions to the Industry Competence Committee (ICC) under the Building Safety Regulator (BSR).
Principal Contractor Competency Certification Scheme
CIOB PCCCS competence framework for Principal Contractors.
The CIAT Principal Designer register
Issues explained via a series of FAQs.