Biocement
This series of figures illustrates a biocement application in bee nesting. Figure (a) shows a virtual diagram of the biocement brick and housing area. Figure (b) shows the cross section of the design and the holes the bees can nest in. Figure (c) shows the prototype of the bee block made from biocement. |
Contents |
[edit] Introduction
Biocement is a product that stimulates native soil bacteria to connect soil particles through a process known as microbially induced calcite precipitation (MICP). It uses microorganisms to produce a strong and renewable building material with minimal impact on the environment. Compared to the production process of traditional cement, biocement uses less energy and generates less CO2 emissions.
[edit] Development of biocement
MICP produced biocement is shipped as a dry powder that is mixed with water. This process - referred to as biocementation - results in a product that may serve as an appropriate substitute for cement in construction projects.
Using bacteria to generate calcium carbonate precipitation incorporates several chemical reactions, including the hydrolysis of urea. This has become one of the most commonly used processes for the production of biocement in terms of cost and time.
There are several suggested uses for MICP biocement, including crack remediation, concrete corrosion moderation and biogrout (a soil improvement method) production.
[edit] Self-healing biocement
Biocement has also been used in self-healing applications. In this procedure, water is used to activate the bacteria to react materials. for sealing cracks, filling pores and bonding surfaces with bacterial calcium carbonate deposits. It offers durability, leak prevention and extends the service life of concrete structures.
Oxygen is consumed by the bacteria to convert calcium into limestone, which closes the crack and helps in the prevention of the corrosion of steel reinforcement due to water ingress.
This technique may prove useful in the preservation or conservation of structures built from porous materials. Buildings, monuments and other vulnerable objects may be especially susceptible to moisture, chemicals, pollutants and other contaminants that have an impact on their strength and appearance. The success of the process may depend on several environmental factors, including weather conditions and pH levels.
[edit] Biocement bricks
Biocement bricks are another product that can be 'grown'. Instead of requiring a significant amount of heat in the production process, these bricks are created by using a bacterial byproduct to fuse sand particles together and form a durable building material.
This technique was developed by bioMASON, a North Carolina company founded by architect Ginger Krieg Dosier. These durable bricks use a combination of biomass, aggregate, renewable nutrients and minerals that are placed into moulds and then treated with a type of bacteria (Sporosarcina pasteurii) that is fed with calcium ions and water. This results in the production of a calcium carbonate shell that can be used to create a 'natural' biocement brick. The process takes less than three days and is said to simulate the actions used by corals.
In a Wired article entitled, How to grow bricks from trillions of bacteria, Kathryn Nave writes: ‘A single bacterial brick takes two to five days to grow, compared with three to five days to make a kiln-fired version. “We can make bricks that glow in the dark, bricks that absorb pollution, bricks that change colour when wet," Dosier says.’
[edit] Related articles on Designing Buildings
- Artificial cement.
- Cement.
- Concrete.
- Cradle-to-cradle.
- Cradle to cradle product registry system.
- Self-healing concrete.
- Self-healing concrete and sweaty roofs: is this the future of buildings?
- Regenerative design.
[edit] External resources
- Kathryn Nave, Wired, How to grow bricks from trillions of bacteria.
Featured articles and news
HSE simplified advice for installers of stone worktops
After company fined for repeatedly failing to protect workers.
Co-located with 10th year of UK Construction Week.
How orchards can influence planning and development.
Time for knapping, no time for napping
Decorative split stone square patterns in facades.
A practical guide to the use of flint in design and architecture.
Designing for neurodiversity: driving change for the better
Accessible inclusive design translated into reality.
RIBA detailed response to Grenfell Inquiry Phase 2 report
Briefing notes following its initial 4 September response.
Approved Document B: Fire Safety from March
Current and future changes with historical documentation.
A New Year, a new look for BSRIA
As phase 1 of the BSRIA Living Laboratory is completed.
A must-attend event for the architecture industry.
Caroline Gumble to step down as CIOB CEO in 2025
After transformative tenure take on a leadership role within the engineering sector.
RIDDOR and the provisional statistics for 2023 / 2024
Work related deaths; over 50 percent from construction and 50 percent recorded as fall from height.
Solar PV company fined for health and safety failure
Work at height not properly planned and failure to take suitable steps to prevent a fall.
The term value when assessing the viability of developments
Consultation on the compulsory purchase process, compensation reforms and potential removal of hope value.
Trees are part of the history of how places have developed.