Airborne sound
Sound is caused by vibrations which transmit through a medium and reach the ear or some other form of detecting device. Sound is measured in loudness (decibels (dB)) and frequency (Hertz (Hz)).
Airborne sound (or airborne noise) is sound that is transmitted through the air.
Typically, airborne sound might be generated by:
This is as opposed to structure-borne sound that results from an impact on or a continuous vibration against a part of a building fabric resulting in sound being radiated from an adjacent vibrating surface. An example of structure-borne sound is footsteps of a floor being heard in a room below.
Whilst they are sometimes considered to be separate phenomena, airborne and structure-borne sound are related, in that airborne sound can cause structure-borne sound and vice versa. Airborne sound may cause an element of the building fabric to vibrate when it encounters a surface, and structural vibrations may radiate from a surface, generating airborne sound.
Poor detailing or poor standards of workmanship can result in airborne sound transmitting directly between spaces, for example through gaps around the edge of doors, and may result in flanking sound, where sound travels around a separating element, even though the element itself might provide exceptionally good acoustic insulation. Even exceedingly small gaps can cause a significant increase in the transmission of airborne sound.
Problems can also occur where doors, windows, or other openings face onto ‘noisy’ spaces, such as a circulation space, a busy road, or a school playground. If this deters occupants from leaving elements of the building open, this can affect the performance of natural ventilation strategies.
The amount of airborne sound in a space can be reduced by acoustic absorption, which reduces the amount of sound reflecting back into the space from the surfaces enclosing it, by acoustic insulation which reduces the amount or sound transmitting into the space from an adjacent space through the building fabric and by the elimination of gaps that might permit direct transmission.
Airborne sound transmission can be tested by placing a loudspeaker in a space to generate sound at a range of frequencies, and detecting any resulting sound in an adjacent space with a microphone. The difference is then calculated and adjustment made to take into account the sound absorption characteristics of the ‘receiving’ space. Tests are typically carried out in the range from 125 Hz to 4000 Hz.
Building Regulations Approved Document E - 'Resistance to the passage of sound' sets minimum standards for airborne sound insulation.
[edit] Related articles on Designing Buildings Wiki
- Acoustics in the workplace.
- Approved Document E.
- Audio frequency.
- Building acoustics.
- Building Bulletin 93: acoustic design of schools.
- Decibel.
- Impact sound.
- Flanking sound.
- Noise nuisance.
- Part E compliance.
- Pre-completion sound testing.
- Reverberation time.
- Robust details certification scheme.
- Room acoustics.
- Sound absorption.
- Sound frequency.
- Sound insulation.
- Sound power.
- Sound reduction index (SRI).
- Sound v noise.
- Structure-borne sound.
- Suitable insulation can help preserve the golden sound of silence.
Featured articles and news
Reasons for using MVHR systems
6 reasons for a whole-house approach to ventilation.
Supplementary Planning Documents, a reminder
As used by the City of London to introduce a Retrofit first policy.
The what, how, why and when of deposit return schemes
Circular economy steps for plastic bottles and cans in England and Northern Ireland draws.
Join forces and share Building Safety knowledge in 2025
Why and how to contribute to the Building Safety Wiki.
Reporting on Payment Practices and Performance Regs
Approved amendment coming into effect 1 March 2025.
A new CIOB TIS on discharging CDM 2015 duties
Practical steps that can be undertaken in the Management of Contractors to discharge the relevant CDM 2015 duties.
Planning for homes by transport hubs
Next steps for infrastructure following the updated NPPF.
Access, history and Ty unnos.
The world’s first publicly funded civic park.
Exploring permitted development rights for change of use
Discussing lesser known classes M, N, P, PA and L.
CIOB Art of Building 2024 judges choice winner
Once Upon a Pass by Liam Man.
CIOB Art of Building 2024 public choice winner
Fresco School by Roman Robroek.
HE expands finance alliance to boost SME house building
Project follows on from Habiko public-private place making pension partnership for affordable housing delivery.
Licensing construction; looking back to look forward
Voluntary to required contractors (licensing) schemes.
A contractor discusses the Building Safety Act
A brief to the point look at changes that have occurred.
How orchards can influence planning and development.