Environmental modelling
Contents |
[edit] Introduction
Environmental modelling involves the application of multidisciplinary knowledge to explain, explore and predict the Earth’s response to environmental change, both natural and human-induced.
Environmental models can be used to study many things, such as:
- Climate.
- Coastal changes.
- Hydro-ecological systems.
- Ocean circulation.
- Surface and groundwater.
- Terrestrial carbon.
- The behaviour of enclosed spaces.
- The behaviour of spaces around buildings.
According to the Environment Protection Agency (EPA) (2009a), a model is defined as:
‘A simplification of reality that is constructed to gain insights into select attributes of a physical, biological, economic, or social system. A formal representation of the behaviour of system processes, often in mathematical or statistical terms. The basis can also be physical or conceptual.’ |
Models can be used to improve understanding of natural systems and their reactions to changing conditions. They can also help inform decisions and policy.
Models are becoming increasingly sophisticated as computational power increases and our knowledge of processes and behaviours improves, but they will never completely replicate the full complexity of environmental system, and must be based on simplifications of, and assumptions about, environmental processes. Despite these limitations, models can be invaluable tools in helping diagnose what has taken place, to examine the causes of behaviour and to forecast outcomes and future events.
Before beginning modelling, it is important to identify the limitations and boundaries of available models, or models that can be created, how they can be applied and to which systems and situations.
When developing a model the following questions should be considered:
- What are the processes that the model is attempting to reproduce or include?
- What is the time scale for these processes?
- What is the spatial scale of these processes?
- How reliable will the results be?
- How will the results be used?
- Do the benefits of modelling outweigh the cost?
- Is an alternative means of assessment available?
[edit] Types of model
There are a number of different kinds of model, including:
- Empirical: Relying on observed relationships in experimental data.
- Mechanistic: Including the underlying mechanisms and processes between the variables.
- Deterministic: Changes in model outputs are due to changes in model components, meaning that repeated tests under constant conditions will produce consistent results.
- Probabilistic: Utilising the entire range of input data to develop a probability distribution of model output rather than a single point value.
- Dynamic: Predict the way a system may change over time or space.
- Static: Predict the way a system may change as the value of an independent variable changes.
[edit] Model life-cycle
The model life-cycle may include a number of stages.
Identification:
- Determine the correct decision-related questions and establish the modelling objectives.
- Define the purpose of the modelling activity.
- Specify the context of the model application.
Development:
- Develop the conceptual model that reflects the underlying science of the included processes.
- Develop the mathematical representation of that science.
Evaluation:
- Peer review.
- Formal testing to ensure the correct encoding of model expressions.
- Comparison with empirical data to test model outputs.
Application:
[edit] Data quality
It is important that data upon which environmental modelling is based is of a high quality. Data which is of poor quality will not yield model results of a higher quality.
Some of the indicators of data quality include:
- Precision.
- Bias.
- Representativeness.
- Comparability.
- Completeness.
- Sensitivity.
[edit] Model availability
Modelling complex systems has in the past been carried out by experts who have a sound understanding of the processes involved, and a good grasp of the sort of input data that is required and the outputs that are likely to be generated. In effect, the model would, to a certain extent, simply confirm what they already expected. If the model produced unexpected results, they would re-assess the inputs, the model and the outputs to understand why.
As computers have become increasingly powerful, more data has become available, and software developers have begun to give models more user-friendly front ends, and visually attractive outputs, modelling has become accessible to non-experts. Whilst this can be positive, in that it allows greater use of sophisticated analytical tools, it can also be very dangerous, as the inexperienced modeller is more likely to accept model outputs as 'facts' rather than simply a contributing part of a wider analytical process that should be regarded with healthy scepticism.
[edit] Related articles on Designing Buildings Wiki
- Carbon plan.
- Civil engineers must report climate-change risk.
- Climate change science.
- Computational fluid dynamics.
- Construction environmental management plan.
- Conventions for calculating linear thermal transmittance and temperature factors.
- Dynamic thermal modelling of closed loop geothermal heat pump systems.
- Energy targets for buildings.
- Environment.
- Environmental impact.
- Environmental impact assessment EIA.
- The design of temporary structures and wind adjacent to tall buildings.
- The thermal behaviour of spaces enclosed by fabric membranes (Thesis).
- Thermal behaviour of architectural fabric structures.
Featured articles and news
A briefing on fall protection systems for designers
A legal requirement and an ethical must.
CIOB Ireland launches manifesto for 2024 General Election
A vision for a sustainable, high-quality built environment that benefits all members of society.
Local leaders gain new powers to support local high streets
High Street Rental Auctions to be introduced from December.
Infrastructure sector posts second gain for October
With a boost for housebuilder and commercial developer contract awards.
Sustainable construction design teams survey
Shaping the Future of Sustainable Design: Your Voice Matters.
COP29; impacts of construction and updates
Amid criticism, open letters and calls for reform.
The properties of conservation rooflights
Things to consider when choosing the right product.
Adapting to meet changing needs.
London Build: A festival of construction
Co-located with the London Build Fire & Security Expo.
Tasked with locating groups of 10,000 homes with opportunity.
Delivering radical reform in the UK energy market
What are the benefits, barriers and underlying principles.
Information Management Initiative IMI
Building sector-transforming capabilities in emerging technologies.
Recent study of UK households reveals chilling home truths
Poor insulation, EPC knowledge and lack of understanding as to what retrofit might offer.
Embodied Carbon in the Built Environment
Overview, regulations, detail calculations and much more.
Why the construction sector must embrace workplace mental health support
Let’s talk; more importantly now, than ever.
Ensuring the trustworthiness of AI systems
A key growth area, including impacts for construction.